EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Nonequilibrium Statistical Physics of Small Systems

Download or read book Nonequilibrium Statistical Physics of Small Systems written by Rainer Klages and published by John Wiley & Sons. This book was released on 2013-03-15 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a comprehensive picture of nonequilibrium phenomena in nanoscale systems. Written by internationally recognized experts in the field, this book strikes a balance between theory and experiment, and includes in-depth introductions to nonequilibrium fluctuation relations, nonlinear dynamics and transport, single molecule experiments, and molecular diffusion in nanopores. The authors explore the application of these concepts to nano- and biosystems by cross-linking key methods and ideas from nonequilibrium statistical physics, thermodynamics, stochastic theory, and dynamical systems. By providing an up-to-date survey of small systems physics, the text serves as both a valuable reference for experienced researchers and as an ideal starting point for graduate-level students entering this newly emerging research field.

Book Self Assembled Quantum Dots

Download or read book Self Assembled Quantum Dots written by Zhiming M Wang and published by Springer Science & Business Media. This book was released on 2007-11-29 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: This multidisciplinary book provides up-to-date coverage of carrier and spin dynamics and energy transfer and structural interaction among nanostructures. Coverage also includes current device applications such as quantum dot lasers and detectors, as well as future applications to quantum information processing. The book will serve as a reference for anyone working with or planning to work with quantum dots.

Book Dissertation Abstracts International

Download or read book Dissertation Abstracts International written by and published by . This book was released on 2003 with total page 730 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Open Quantum Systems Far from Equilibrium

Download or read book Open Quantum Systems Far from Equilibrium written by Gernot Schaller and published by Springer. This book was released on 2014-01-07 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph provides graduate students and also professional researchers aiming to understand the dynamics of open quantum systems with a valuable and self-contained toolbox. Special focus is laid on the link between microscopic models and the resulting open-system dynamics. This includes how to derive the celebrated Lindblad master equation without applying the rotating wave approximation. As typical representatives for non-equilibrium configurations it treats systems coupled to multiple reservoirs (including the description of quantum transport), driven systems and feedback-controlled quantum systems. Each method is illustrated with easy-to-follow examples from recent research. Exercises and short summaries at the end of every chapter enable the reader to approach the frontiers of current research quickly and make the book useful for quick reference.

Book Non equilibrium Many body States in Carbon Nanotube Quantum Dots

Download or read book Non equilibrium Many body States in Carbon Nanotube Quantum Dots written by Tokuro Hata and published by Springer. This book was released on 2019-05-14 with total page 86 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the first experiment revealing several unexplored non-equilibrium properties of quantum many-body states, and addresses the interplay between the Kondo effect and superconductivity by probing shot noise. In addition, it describes in detail nano-fabrication techniques for carbon nanotube quantum dots, and a measurement protocol and principle that probes both equilibrium and non-equilibrium quantum states of electrons. The book offers various reviews of topics in mesoscopic systems: shot noise measurement, carbon nanotube quantum dots, the Kondo effect in quantum dots, and quantum dots with superconducting leads, which are relevant to probing non-equilibrium physics. These reviews offer particularly valuable resources for readers interested in non-equilibrium physics in mesoscopic systems. Further, the cutting-edge experimental results presented will allow reader to catch up on a vital new trend in the field.

Book Theory of Electron Transport in Semiconductors

Download or read book Theory of Electron Transport in Semiconductors written by Carlo Jacoboni and published by Springer Science & Business Media. This book was released on 2010-09-05 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book originated out of a desire to provide students with an instrument which might lead them from knowledge of elementary classical and quantum physics to moderntheoreticaltechniques for the analysisof electrontransport in semiconductors. The book is basically a textbook for students of physics, material science, and electronics. Rather than a monograph on detailed advanced research in a speci?c area, it intends to introduce the reader to the fascinating ?eld of electron dynamics in semiconductors, a ?eld that, through its applications to electronics, greatly contributed to the transformationof all our lives in the second half of the twentieth century, and continues to provide surprises and new challenges. The ?eld is so extensive that it has been necessary to leave aside many subjects, while others could be dealt with only in terms of their basic principles. The book is divided into ?ve major parts. Part I moves from a survey of the fundamentals of classical and quantum physics to a brief review of basic semiconductor physics. Its purpose is to establish a common platform of language and symbols, and to make the entire treatment, as far as pos- ble, self-contained. Parts II and III, respectively, develop transport theory in bulk semiconductors in semiclassical and quantum frames. Part IV is devoted to semiconductor structures, including devices and mesoscopic coherent s- tems. Finally, Part V develops the basic theoretical tools of transport theory within the modern nonequilibrium Green-function formulation, starting from an introduction to second-quantization formalism.

Book Quantum Transport in Mesoscopic Systems

Download or read book Quantum Transport in Mesoscopic Systems written by David Sánchez and published by MDPI. This book was released on 2021-01-06 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mesoscopic physics deals with systems larger than single atoms but small enough to retain their quantum properties. The possibility to create and manipulate conductors of the nanometer scale has given birth to a set of phenomena that have revolutionized physics: quantum Hall effects, persistent currents, weak localization, Coulomb blockade, etc. This Special Issue tackles the latest developments in the field. Contributors discuss time-dependent transport, quantum pumping, nanoscale heat engines and motors, molecular junctions, electron–electron correlations in confined systems, quantum thermo-electrics and current fluctuations. The works included herein represent an up-to-date account of exciting research with a broad impact in both fundamental and applied topics.

Book Electron Transport in Nanosystems

Download or read book Electron Transport in Nanosystems written by Janez Bonca and published by Springer Science & Business Media. This book was released on 2008-10-24 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the NATO Advanced Research Workshop on Electron Transport in Nanosystems Yalta, Ukraine 17-21 September 2007

Book Quantum Dot Devices

    Book Details:
  • Author : Zhiming M. Wang
  • Publisher : Springer Science & Business Media
  • Release : 2012-05-24
  • ISBN : 1461435706
  • Pages : 375 pages

Download or read book Quantum Dot Devices written by Zhiming M. Wang and published by Springer Science & Business Media. This book was released on 2012-05-24 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum dots as nanomaterials have been extensively investigated in the past several decades from growth to characterization to applications. As the basis of future developments in the field, this book collects a series of state-of-the-art chapters on the current status of quantum dot devices and how these devices take advantage of quantum features. Written by 56 leading experts from 14 countries, the chapters cover numerous quantum dot applications, including lasers, LEDs, detectors, amplifiers, switches, transistors, and solar cells. Quantum Dot Devices is appropriate for researchers of all levels of experience with an interest in epitaxial and/or colloidal quantum dots. It provides the beginner with the necessary overview of this exciting field and those more experienced with a comprehensive reference source.

Book Nonequilibrium Quantum Transport Physics In Nanosystems  Foundation Of Computational Nonequilibrium Physics In Nanoscience And Nanotechnology

Download or read book Nonequilibrium Quantum Transport Physics In Nanosystems Foundation Of Computational Nonequilibrium Physics In Nanoscience And Nanotechnology written by Felix A Buot and published by World Scientific. This book was released on 2009-08-05 with total page 838 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the first comprehensive treatment of discrete phase-space quantum mechanics and the lattice Weyl-Wigner formulation of energy band dynamics, by the originator of these theoretical techniques. The author's quantum superfield theoretical formulation of nonequilibrium quantum physics is given in real time, without the awkward use of artificial time contour employed in previous formulations. These two main quantum theoretical techniques combine to yield general (including quasiparticle-pairing dynamics) and exact quantum transport equations in phase-space, appropriate for nanodevices. The derivation of transport formulas in mesoscopic physics from the general quantum transport equations is also treated. Pioneering nanodevices are discussed in the light of the quantum-transport physics equations, and an in-depth treatment of the physics of resonant tunneling devices is given. Operator Hilbert-space methods and quantum tomography are discussed. Discrete phase-space quantum mechanics on finite fields is treated for completeness and by virtue of its relevance to quantum computing. The phenomenological treatment of evolution superoperator and measurements is given to help clarify the general quantum transport theory. Quantum computing and information theory is covered to demonstrate the foundational aspects of discrete quantum dynamics, particularly in deriving a complete set of multiparticle entangled basis states.

Book Quantum Transport in Interacting Nanojunctions

Download or read book Quantum Transport in Interacting Nanojunctions written by Andrea Donarini and published by Springer Nature. This book was released on with total page 587 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Non Linear Transport Properties of Hybrid Nanoelectronic Devices

Download or read book Non Linear Transport Properties of Hybrid Nanoelectronic Devices written by Henning Soller and published by Logos Verlag Berlin GmbH. This book was released on 2013 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of this thesis is the study of hybrid nanoelectronic components involving superconductors or excitonic systems. The behavior of such electronic devices is relevant both for the miniaturization of electronics as well as for possible future on-chip quantum computation. In order to characterise them the cumulant generating function of charge transfer is calculated. First, quantum point contacts between (conventional und unconventional) superconductors, ferromagnets and semiconductors are investigated. The focus of interest are transport processes involving non-trivial correlated electronic states such as Cooper pairs, excitons or Majorana fermions. In the second part quantum impurities are included and the effects of onsite Coulomb and electron-phonon interaction are discussed. Using these results the possibility to witness entanglement in superconducting beamsplitters is demonstrated. The results are compared both to different theoretical approaches and experimental data.

Book Control of Magnetotransport in Quantum Billiards

Download or read book Control of Magnetotransport in Quantum Billiards written by Christian V. Morfonios and published by Springer. This book was released on 2016-11-16 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book the coherent quantum transport of electrons through two-dimensional mesoscopic structures is explored in dependence of the interplay between the confining geometry and the impact of applied magnetic fields, aiming at conductance controllability. After a top-down, insightful presentation of the elements of mesoscopic devices and transport theory, a computational technique which treats multiterminal structures of arbitrary geometry and topology is developed. The method relies on the modular assembly of the electronic propagators of subsystems which are inter- or intra-connected providing large flexibility in system setups combined with high computational efficiency. Conductance control is first demonstrated for elongated quantum billiards and arrays thereof where a weak magnetic field tunes the current by phase modulation of interfering lead-coupled states geometrically separated from confined states. Soft-wall potentials are then employed for efficient and robust conductance switching by isolating energy persistent, collimated or magnetically deflected electron paths from Fano resonances. In a multiterminal configuration, the guiding and focusing property of curved boundary sections enables magnetically controlled directional transport with input electron waves flowing exclusively to selected outputs. Together with a comprehensive analysis of characteristic transport features and spatial distributions of scattering states, the results demonstrate the geometrically assisted design of magnetoconductance control elements in the linear response regime.

Book Advances in Semiconductor Nanostructures

Download or read book Advances in Semiconductor Nanostructures written by Alexander V. Latyshev and published by Elsevier. This book was released on 2016-11-10 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Semiconductor Nanostructures: Growth, Characterization, Properties and Applications focuses on the physical aspects of semiconductor nanostructures, including growth and processing of semiconductor nanostructures by molecular-beam epitaxy, ion-beam implantation/synthesis, pulsed laser action on all types of III–V, IV, and II–VI semiconductors, nanofabrication by bottom-up and top-down approaches, real-time observations using in situ UHV-REM and high-resolution TEM of atomic structure of quantum well, nanowires, quantum dots, and heterostructures and their electrical, optical, magnetic, and spin phenomena. The very comprehensive nature of the book makes it an indispensable source of information for researchers, scientists, and post-graduate students in the field of semiconductor physics, condensed matter physics, and physics of nanostructures, helping them in their daily research. - Presents a comprehensive reference on the novel physical phenomena and properties of semiconductor nanostructures - Covers recent developments in the field from all over the world - Provides an International approach, as chapters are based on results obtained in collaboration with research groups from Russia, Germany, France, England, Japan, Holland, USA, Belgium, China, Israel, Brazil, and former Soviet Union countries

Book Quench Dynamics in Interacting and Superconducting Nanojunctions

Download or read book Quench Dynamics in Interacting and Superconducting Nanojunctions written by Rubén Seoane Souto and published by Springer Nature. This book was released on 2020-02-05 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Effects of many-body interactions and superconducting correlations have become central questions in the quantum transport community. While most previous works investigating current fluctuations in nanodevices have been restricted to the stationary regime, Seoane's thesis extends these studies to the time domain. It provides relevant information about the time onset of electronic correlations mediated by interactions and superconductivity. This knowledge is essential for the development of fast electronic devices, as well as novel applications requiring fast manipulations, such as quantum information processing. In addition, the thesis establishes contact with issues of broad current interest such as non-equilibrium quantum phase transitions.

Book Theory of Transport Properties of Semiconductor Nanostructures

Download or read book Theory of Transport Properties of Semiconductor Nanostructures written by Eckehard Schöll and published by Springer Science & Business Media. This book was released on 2013-11-27 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent advances in the fabrication of semiconductors have created almost un limited possibilities to design structures on a nanometre scale with extraordinary electronic and optoelectronic properties. The theoretical understanding of elec trical transport in such nanostructures is of utmost importance for future device applications. This represents a challenging issue of today's basic research since it requires advanced theoretical techniques to cope with the quantum limit of charge transport, ultrafast carrier dynamics and strongly nonlinear high-field ef fects. This book, which appears in the electronic materials series, presents an over view of the theoretical background and recent developments in the theory of electrical transport in semiconductor nanostructures. It contains 11 chapters which are written by experts in their fields. Starting with a tutorial introduction to the subject in Chapter 1, it proceeds to present different approaches to transport theory. The semiclassical Boltzmann transport equation is in the centre of the next three chapters. Hydrodynamic moment equations (Chapter 2), Monte Carlo techniques (Chapter 3) and the cellular au tomaton approach (Chapter 4) are introduced and illustrated with applications to nanometre structures and device simulation. A full quantum-transport theory covering the Kubo formalism and nonequilibrium Green's functions (Chapter 5) as well as the density matrix theory (Chapter 6) is then presented.

Book Mesoscopic Quantum Hall Effect

Download or read book Mesoscopic Quantum Hall Effect written by Ivan Levkivskyi and published by Springer Science & Business Media. This book was released on 2012-08-18 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, remarkable progress in the fabrication of novel mesoscopic devices has produced a revival of interest in quantum Hall physics. New types of measurements, more precise and efficient than ever, have made it possible to focus closely on the electronic properties of quantum Hall edge states. This is achieved by applying charge and heat currents at mesoscopic length scales, attaching metallic gates and Ohmic contacts, and splitting edge channels with the help of quantum point contacts. The experiments reveal fascinating new phenomena, such as the interference, statistics, and topological phase shifts of fractionally charged quasi-particles, strong interaction and correlation effects, and phase transitions induced by non-Gaussian fluctuations. The thesis discusses some puzzling results of these experiments and presents a coherent picture of mesoscopic effects in quantum Hall systems, which accounts for integer and fractional filling factors and ranges from microscopic theory to effective models, and covers both equilibrium and non-equilibrium phenomena.