EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Non Traditional Shape GFRP Rebars for Concrete Reinforcement

Download or read book Non Traditional Shape GFRP Rebars for Concrete Reinforcement written by Guillermo G Claure and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of glass-fiber-reinforced-polymer (GFRP) composites as internal reinforcement (rebars) for concrete structures has proven to be an alternative to traditional steel reinforcement due to significant advantages such as magnetic transparency and, most importantly, corrosion resistance equating to durability and structural life extension. In recent years, the number of projects specifying GFRP reinforcement has increased dramatically leading the construction industry towards more sustainable practices. Typically, GFRP rebars are similar to their steel counterparts having external deformations or surface enhancements designed to develop bond to concrete, as well as having solid circular cross-sections; but lately, the worldwide composites industry has taken advantage of the pultrusion process developing GFRP rebars with non-traditional cross-sectional shapes destined to optimize their mechanical, physical, and environmental attributes. Recently, circular GFRP rebars with a hollow-core have also become available. They offer advantages such as a larger surface area for improved bond, and the use of the effective cross-sectional area that is engaged to carry load since fibers at the center of a solid cross-section are generally not fully engaged. For a complete understanding of GFRP rebar physical properties, a study on material characterization regarding a quantitative cross-sectional area analysis of different GFRP rebars was undertaken with a sample population of 190 GFRP specimens with rebar denomination ranging from #2 to #6 and with different cross-sectional shapes and surface deformations manufactured by five pultruders from around the world. The water displacement method was applied as a feasible and reliable way to conduct the investigation. In addition to developing a repeatable protocol for measuring cross-sectional area, the objectives of establishing critical statistical information related to the test methodology and recommending improvements to existing provisions and standards allowing for a consistent universal norm for all GFRP rebars were reached. This dissertation also presents an evaluation of the structural behavior of reinforced concrete (RC) beams and slabs using the new type of GFRP rebar consisting of a non-traditional hollow-core shape compared to "traditional" solid round rebars with equivalent cross-sectional areas within the framework of two studies, respectively. To validate the design assumptions following ACI 440.1R design guidelines, two conditions were investigated: under-reinforced (failure controlled by rupture of GFRP rebar); and, over-reinforced (failure controlled by crushing of concrete). For comparison, a cyclic three-point bending load test matrix was developed: for beams, 3 under-reinforced and 3 over-reinforced with hollow-core and solid GFRP rebars, respectively, making a total of 12 RC specimens; for slabs, 3 under-reinforced and 3 over-reinforced with hollow-core and 2 types of solid GFRP rebars, respectively, making a total of 18 RC slabs. The studies on GFRP RC beams and slabs concluded that the hollow-core GFRP rebars were as effective as their solid counterpart and ACI 440.1R design guidelines were applicable to predict their performance. It was shown that final design may be controlled by the permissible deflections as governing parameter for elements under service conditions. Also, a final study with a test matrix containing six extra specimens was generated for post-fire residual strength evaluation of fire-exposed GFRP RC slabs along with temperature gradient in the slabs and dynamic mechanical analysis (DMA) investigation on GFRP samples extracted from the fire-exposed slabs. In this study, the ability of GFRP RC slabs to retain structural integrity during a standards fire exposure as well as determining the residual structural capacity were investigated. The residual strength evaluation of the fire-exposed slabs showed a range of results varying between ± 10%, of the virgin slabs. And, 19 mm (0.75 in.) cover with normal weight concrete was shown to be adequate to provide the necessary fire protection to the GFRP rebars preventing irreversible damage for two-hour fire rated GFRP RC slabs subjected to service loads; also, from the DMA and glass transition temperature of samples extracted from the GFRP rebars, it is inferred that the resin had undergone a post curing phase.

Book Alternative Materials for the Reinforcement and Prestressing of Concrete

Download or read book Alternative Materials for the Reinforcement and Prestressing of Concrete written by J.L. Clarke and published by CRC Press. This book was released on 2003-09-02 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Corrosion of steel reinforcement in concrete is a major problem, with serious implications for structural integrity and durability particularly for bridges and marine structures. This new book provides a thorough overview of recent developments and applications in this area. It examines the durability, strength and suitability of alternative materials.

Book Reinforced Concrete Design with FRP Composites

Download or read book Reinforced Concrete Design with FRP Composites written by Hota V.S. GangaRao and published by CRC Press. This book was released on 2006-11-20 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although the use of composites has increased in many industrial, commercial, medical, and defense applications, there is a lack of technical literature that examines composites in conjunction with concrete construction. Fulfilling the need for a comprehensive, explicit guide, Reinforced Concrete Design with FRP Composites presents specific informat

Book Reinforced Concrete with FRP Bars

Download or read book Reinforced Concrete with FRP Bars written by Antonio Nanni and published by CRC Press. This book was released on 2014-03-05 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: Corrosion-resistant, electromagnetic transparent and lightweight fiber-reinforced polymers (FRPs) are accepted as valid alternatives to steel in concrete reinforcement. Reinforced Concrete with FRP Bars: Mechanics and Design, a technical guide based on the authors more than 30 years of collective experience, provides principles, algorithms, and pr

Book Guide for the Design and Construction of Concrete Reinforced with Fiber Reinforced Polymer Bars

Download or read book Guide for the Design and Construction of Concrete Reinforced with Fiber Reinforced Polymer Bars written by ACI Committee 440 and published by . This book was released on 2003 with total page 42 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Towards the Development of Pseudoductile FRP Rebar

Download or read book Towards the Development of Pseudoductile FRP Rebar written by Marcus A. Ivey and published by . This book was released on 2015 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: Steel has traditionally been used as the material of choice for concrete reinforcement, due in part to its combination of high strength, stiffness, and ductility. However, steel rebar is susceptible to corrosion when exposed to moisture and salts, which can lead to delamination between the steel and concrete, requiring costly repairs to prevent premature failure of reinforced structures. In order to solve this problem, non-corrosive fiber reinforced polymer (FRP) rebar can be used in the place of steel. Apart from being inherently corrosion resistant, FRP rebar has high specific stiffness and strength, and is non-magnetic. The primary limiting factor of conventional FRP rebars is that they are linear elastic to failure, at low ultimate strains. As a result, higher safety factors must be used when designing structures reinforced with these materials, as they are unable to exhibit significant visual warning before ultimate failure. Improving the ductility of FRP rebar could allow for less conservative design practices to be used, resulting in material and cost savings. In this thesis, FRP rebar was developed to fail in a pseudoductile manner, meaning that ductility is achieved based on the composite architecture, rather than the inherent properties of its constituent fibers and matrix. The development process included rebar design, manufacturing, structural characterization, and mechanical testing. Pseudoductility was achieved by a combination of material and structural hybridization, with the final rebar consisting of a unidirectional carbon fiber core encased in a braided aramid fiber overwrap. The rebar used a thermosetting matrix material, and was manufactured by a dieless braidtrusion method, which combined aspects of pultrusion and braiding into a single continuous process. The rebar was characterized by various methods, including optical microscopy, scanning electron microscopy (SEM), and differential scanning calorimety (DSC), to determine constituent volume fractions, degree of cure, and rebar geometry, and also to assess manufacturing quality and consistency. Equations were presented that were successful in predicting braid angle and rebar dimensions based on manufacturing parameters. Tensile testing was conducted, which showed that the rebar design was successful in achieving the desired pseudoductile failure behavior. Analytical models were developed to predict the tensile behavior of the rebar, and were in good agreement with experimental findings. The models allowed the mechanical properties of the rebar to be predicted based on material properties and manufacturing parameters. An alternative method was presented to extend the pseudoductility of the FRP rebar by introducing discontinuities into the braided overwrap. The discontinuities were used to initiate pullout of the rebar prior to ultimate tensile failure, taking advantage of interfacial sliding between composite layers. Tensile testing was conducted on discontinuous rebar specimens to assess the viability of the proposed failure mechanism, and the design showed promise as a potential method for increased pseudoductility in FRP rebars.

Book Analysis and Performance of Fiber Composites

Download or read book Analysis and Performance of Fiber Composites written by Bhagwan D. Agarwal and published by Wiley-Interscience. This book was released on 1990-10-08 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: Having fully established themselves as workable engineering materials, composite materials are now increasingly commonplace around the world. Serves as both a text and reference guide to the behavior of composite materials in different engineering applications. Revised for this Second Edition, the text includes a general discussion of composites as material, practical aspects of design and performance, and further analysis that will be helpful to those engaged in research on composites. Each chapter closes with references for further reading and a set of problems that will be useful in developing a better understanding of the subject.

Book FRP Reinforcement in RC Structures

Download or read book FRP Reinforcement in RC Structures written by fib Fédération internationale du béton and published by fib Fédération internationale du béton. This book was released on 2007-01-01 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt: fib Bulletin 40 deals mainly with the use of FRP bars as internal reinforcement for concrete structures. The background of the main physical and mechanical properties of FRP reinforcing bars is presented, with special emphasis on durability aspects. For each of the typical ultimate and serviceability limit states, the basic mechanical model is given, followed by different design models according to existing codes or design guidelines. Composite FRP materials are still relatively new in construction and most engineers are unfamiliar with their properties and characteristics. The second chapter of this bulletin therefore aims to provide practising engineers with the necessary background knowledge in this field, and also presents typical products currently available in the international market. The third chapter deals with the issue of durability and identifies the parameters that can lead to deterioration, which is necessary information when addressing design issues. A series of parameters is used to identify the allowable stress in the FRP after exposure for a specified period of time in a specific environment. The bulletin covers the issues of Ultimate Limit States (primarily dealing with flexural design), Serviceability Limit States (dealing with deflections and cracking), Shear and Punching Shear and Bond and Tension Stiffening. It provides not only the state-of-the-art but also in many cases ideas for the next generation of design guidelines. The final chapter deals with the fundamental issue of design philosophy. The use of these new materials as concrete reinforcement has forced researchers to re-think many of the fundamental principles used until now in RC design. The bulletin ends with a discussion of a possible new framework for developing partial safety factors to ensure specific safety levels that will be flexible enough to cope with new materials.

Book Fiber reinforced plastic  FRP  Reinforcement for Concrete Structures

Download or read book Fiber reinforced plastic FRP Reinforcement for Concrete Structures written by Antonio Nanni and published by Elsevier Publishing Company. This book was released on 1993 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of fiber reinforced plastic (FRP) composites for prestressed and non-prestressed concrete reinforcement has developed into a technology with serious and substantial claims for the advancement of construction materials and methods. Research and development is now occurring worldwide. The 20 papers in this volume make a further contribution in advancing knowledge and acceptance of FRP composites for concrete reinforcement. The articles are divided into three parts. Part I introduces FRP reinforcement for concrete structures and describes general material properties and manufacturing meth.

Book Non Metallic  FRP  Reinforcement for Concrete Structures

Download or read book Non Metallic FRP Reinforcement for Concrete Structures written by L. Taerwe and published by CRC Press. This book was released on 2004-06-02 with total page 736 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dealing with a wide range of non-metallic materials, this book opens up possibilities of lighter, more durable structures. With contributions from leading international researchers and design engineers, it provides a complete overview of current knowledge on the subject.

Book Reinforced Concrete with FRP Bars

Download or read book Reinforced Concrete with FRP Bars written by Antonio Nanni and published by CRC Press. This book was released on 2014-03-05 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Corrosion-resistant, electromagnetic transparent and lightweight fiber-reinforced polymers (FRPs) are accepted as valid alternatives to steel in concrete reinforcement. Reinforced Concrete with FRP Bars: Mechanics and Design, a technical guide based on the authors’ more than 30 years of collective experience, provides principles, algorithms, and practical examples. Well-illustrated with case studies on flexural and column-type members, the book covers internal, non-prestressed FRP reinforcement. It assumes some familiarity with reinforced concrete, and excludes prestressing and near-surface mounted reinforcement applications. The text discusses FRP materials properties, and addresses testing and quality control, durability, and serviceability. It provides a historical overview, and emphasizes the ACI technical literature along with other research worldwide. Includes an explanation of the key physical mechanical properties of FRP bars and their production methods Provides algorithms that govern design and detailing, including a new formulation for the use of FRP bars in columns Offers a justification for the development of strength reduction factors based on reliability considerations Uses a two –story building solved in Mathcad® that can become a template for real projects This book is mainly intended for practitioners and focuses on the fundamentals of performance and design of concrete members with FRP reinforcement and reinforcement detailing. Graduate students and researchers can use it as a valuable resource. Antonio Nanni is a professor at the University of Miami and the University of Naples Federico II. Antonio De Luca and Hany Zadeh are consultant design engineers.

Book Investigation of Glass Fibre Reinforced Polymer Reinforcing Bars as Internal Reinforcement for Concrete Structures

Download or read book Investigation of Glass Fibre Reinforced Polymer Reinforcing Bars as Internal Reinforcement for Concrete Structures written by David Tse Chuen Johnson and published by . This book was released on 2009 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: A study of the existing data shows that two areas of GFRP bar research among others are in need of investigation, the first being behaviour of GFRP bars at cold temperatures and the second being the behaviour of large diameter GFRP rods. Based on the results of experimental work performed, cold temperatures were found to have minimal effect on the mechanical properties of the GFRP bars tested. In addition, through beam testing, large 32mm diameter GFRP bars were found to not fail prematurely due to interlaminar shear failure. By evaluating the mechanical and durability properties of GFRP bars and behaviour of GFRP RC, it can be concluded that GFRP appears to be an adequate alternative reinforcement for concrete structures. Because of high strength, low stiffness and elastic behaviour of GFRP bars, issues of significant importance for reinforced concrete are bond development, influence of shear on member behaviour and member deformability.

Book Advanced Materials and Techniques for Reinforced Concrete Structures

Download or read book Advanced Materials and Techniques for Reinforced Concrete Structures written by Mohamed Abdallah El-Reedy Ph.D and published by CRC Press. This book was released on 2009-06-26 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: From China to Kuala Lumpur to Dubai to downtown New York, amazing buildings and unusual structures create attention with the uniqueness of their design. While attractive to developers and investors, the safe and economic design and construction of reinforced concrete buildings can sometimes be problematic. Advanced Materials and Techniques for Rein

Book Composites for Construction

Download or read book Composites for Construction written by Lawrence C. Bank and published by John Wiley & Sons. This book was released on 2006-07-21 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first textbook on the design of FRP for structural engineering applications Composites for Construction is a one-of-a-kind guide to understanding fiber-reinforced polymers (FRP) and designing and retrofitting structures with FRP. Written and organized like traditional textbooks on steel, concrete, and wood design, it demystifies FRP composites and demonstrates how both new and retrofit construction projects can especially benefit from these materials, such as offshore and waterfront structures, bridges, parking garages, cooling towers, and industrial buildings. The code-based design guidelines featured in this book allow for demonstrated applications to immediately be implemented in the real world. Covered codes and design guidelines include ACI 440, ASCE Structural Plastics Design Manual, EUROCOMP Design Code, AASHTO Specifications, and manufacturer-published design guides. Procedures are provided to the structural designer on how to use this combination of code-like documents to design with FRP profiles. In four convenient sections, Composites for Construction covers: * An introduction to FRP applications, products and properties, and to the methods of obtaining the characteristic properties of FRP materials for use in structural design * The design of concrete structural members reinforced with FRP reinforcing bars * Design of FRP strengthening systems such as strips, sheets, and fabrics for upgrading the strength and ductility of reinforced concrete structural members * The design of trusses and frames made entirely of FRP structural profiles produced by the pultrusion process

Book Fire Properties of Polymer Composite Materials

Download or read book Fire Properties of Polymer Composite Materials written by A. P. Mouritz and published by Springer Science & Business Media. This book was released on 2007-01-30 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first to deal with the important topic of the fire behaviour of fibre reinforced polymer composite materials. The book covers all of the key issues on the behaviour of composites in a fire. Also covered are fire protection materials for composites, fire properties of nanocomposites, fire safety regulations and standards, fire test methods, and health hazards from burning composites.