Download or read book Nonlinear Programming written by Dimitri P. Bertsekas and published by Goodman Publishers. This book was released on 1999 with total page 808 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book The Mathematics of Nonlinear Programming written by Anthony L. Peressini and published by Springer. This book was released on 2012-09-30 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear programming provides an excellent opportunity to explore an interesting variety of pure and solidly applicable mathematics, numerical analysis, and computing. This text develops some of the ideas and techniques involved in the optimization methods using calculus, leading to the study of convexity. This is followed by material on basic numerical methods, least squares, the Karush-Kuhn-Tucker theorem, penalty functions, and Lagrange multipliers. The authors have aimed their presentation at the student who has a working knowledge of matrix algebra and advanced calculus, but has had no previous exposure to optimization.
Download or read book Linear and Nonlinear Programming written by David G. Luenberger and published by Springer Science & Business Media. This book was released on 2008-06-20 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: This third edition of the classic textbook in Optimization has been fully revised and updated. It comprehensively covers modern theoretical insights in this crucial computing area, and will be required reading for analysts and operations researchers in a variety of fields. The book connects the purely analytical character of an optimization problem, and the behavior of algorithms used to solve it. Now, the third edition has been completely updated with recent Optimization Methods. The book also has a new co-author, Yinyu Ye of California’s Stanford University, who has written lots of extra material including some on Interior Point Methods.
Download or read book Nonlinear Programming written by Lorenz T. Biegler and published by SIAM. This book was released on 2010-01-01 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses modern nonlinear programming (NLP) concepts and algorithms, especially as they apply to challenging applications in chemical process engineering. The author provides a firm grounding in fundamental NLP properties and algorithms, and relates them to real-world problem classes in process optimization, thus making the material understandable and useful to chemical engineers and experts in mathematical optimization.
Download or read book Nonlinear Programming written by Mokhtar S. Bazaraa and published by John Wiley & Sons. This book was released on 2013-06-12 with total page 818 pages. Available in PDF, EPUB and Kindle. Book excerpt: COMPREHENSIVE COVERAGE OF NONLINEAR PROGRAMMING THEORY AND ALGORITHMS, THOROUGHLY REVISED AND EXPANDED Nonlinear Programming: Theory and Algorithms—now in an extensively updated Third Edition—addresses the problem of optimizing an objective function in the presence of equality and inequality constraints. Many realistic problems cannot be adequately represented as a linear program owing to the nature of the nonlinearity of the objective function and/or the nonlinearity of any constraints. The Third Edition begins with a general introduction to nonlinear programming with illustrative examples and guidelines for model construction. Concentration on the three major parts of nonlinear programming is provided: Convex analysis with discussion of topological properties of convex sets, separation and support of convex sets, polyhedral sets, extreme points and extreme directions of polyhedral sets, and linear programming Optimality conditions and duality with coverage of the nature, interpretation, and value of the classical Fritz John (FJ) and the Karush-Kuhn-Tucker (KKT) optimality conditions; the interrelationships between various proposed constraint qualifications; and Lagrangian duality and saddle point optimality conditions Algorithms and their convergence, with a presentation of algorithms for solving both unconstrained and constrained nonlinear programming problems Important features of the Third Edition include: New topics such as second interior point methods, nonconvex optimization, nondifferentiable optimization, and more Updated discussion and new applications in each chapter Detailed numerical examples and graphical illustrations Essential coverage of modeling and formulating nonlinear programs Simple numerical problems Advanced theoretical exercises The book is a solid reference for professionals as well as a useful text for students in the fields of operations research, management science, industrial engineering, applied mathematics, and also in engineering disciplines that deal with analytical optimization techniques. The logical and self-contained format uniquely covers nonlinear programming techniques with a great depth of information and an abundance of valuable examples and illustrations that showcase the most current advances in nonlinear problems.
Download or read book Nonlinear Optimization written by Andrzej Ruszczynski and published by Princeton University Press. This book was released on 2011-09-19 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates the theory and the methods of nonlinear optimization in a unified, clear, and mathematically rigorous fashion, with detailed and easy-to-follow proofs illustrated by numerous examples and figures. The book covers convex analysis, the theory of optimality conditions, duality theory, and numerical methods for solving unconstrained and constrained optimization problems. It addresses not only classical material but also modern topics such as optimality conditions and numerical methods for problems involving nondifferentiable functions, semidefinite programming, metric regularity and stability theory of set-constrained systems, and sensitivity analysis of optimization problems. Based on a decade's worth of notes the author compiled in successfully teaching the subject, this book will help readers to understand the mathematical foundations of the modern theory and methods of nonlinear optimization and to analyze new problems, develop optimality theory for them, and choose or construct numerical solution methods. It is a must for anyone seriously interested in optimization.
Download or read book Nonlinear Programming written by Peter Zörnig and published by Walter de Gruyter GmbH & Co KG. This book was released on 2014-08-22 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to nonlinear programming. It deals with the theoretical foundations and solution methods, beginning with the classical procedures and reaching up to “modern” methods like trust region methods or procedures for nonlinear and global optimization. A comprehensive bibliography including diverse web sites with information about nonlinear programming, in particular software, is presented. Without sacrificing the necessary mathematical rigor, excessive formalisms are avoided. Several examples, exercises with detailed solutions, and applications are provided, making the text adequate for individual studies. The book is written for students from the fields of applied mathematics, engineering, economy, and computation.
Download or read book Linear and Nonlinear Programming with Maple written by Paul E. Fishback and published by CRC Press. This book was released on 2009-12-09 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Helps Students Understand Mathematical Programming Principles and Solve Real-World Applications Supplies enough mathematical rigor yet accessible enough for undergraduates Integrating a hands-on learning approach, a strong linear algebra focus, MapleTM software, and real-world applications, Linear and Nonlinear Programming with MapleTM: An Interactive, Applications-Based Approach introduces undergraduate students to the mathematical concepts and principles underlying linear and nonlinear programming. This text fills the gap between management science books lacking mathematical detail and rigor and graduate-level books on mathematical programming. Essential linear algebra tools Throughout the text, topics from a first linear algebra course, such as the invertible matrix theorem, linear independence, transpose properties, and eigenvalues, play a prominent role in the discussion. The book emphasizes partitioned matrices and uses them to describe the simplex algorithm in terms of matrix multiplication. This perspective leads to streamlined approaches for constructing the revised simplex method, developing duality theory, and approaching the process of sensitivity analysis. The book also discusses some intermediate linear algebra topics, including the spectral theorem and matrix norms. Maple enhances conceptual understanding and helps tackle problems Assuming no prior experience with Maple, the author provides a sufficient amount of instruction for students unfamiliar with the software. He also includes a summary of Maple commands as well as Maple worksheets in the text and online. By using Maple’s symbolic computing components, numeric capabilities, graphical versatility, and intuitive programming structures, students will acquire a deep conceptual understanding of major mathematical programming principles, along with the ability to solve moderately sized real-world applications. Hands-on activities that engage students Throughout the book, student understanding is evaluated through "waypoints" that involve basic computations or short questions. Some problems require paper-and-pencil calculations; others involve more lengthy calculations better suited for performing with Maple. Many sections contain exercises that are conceptual in nature and/or involve writing proofs. In addition, six substantial projects in one of the appendices enable students to solve challenging real-world problems.
Download or read book Nonlinear Programming Techniques for Equilibria written by Giancarlo Bigi and published by Springer. This book was released on 2018-09-20 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book considers a range of problems in operations research, which are formulated through various mathematical models such as complementarity, variational inequalities, multiobjective optimization, fixed point problems, noncooperative games and inverse optimization. Moreover, the book subsumes all these models under a common structure that allows them to be formulated in a unique format: the Ky Fan inequality. It subsequently focuses on this unifying equilibrium format, providing a comprehensive overview of the main theoretical results and solution algorithms, together with a wealth of applications and numerical examples. Particular emphasis is placed on the role of nonlinear optimization techniques – e.g. convex optimization, nonsmooth calculus, proximal point and descent algorithms – as valuable tools for analyzing and solving Ky Fan inequalities.
Download or read book Convex Analysis and Nonlinear Optimization written by Jonathan Borwein and published by Springer Science & Business Media. This book was released on 2010-05-05 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization is a rich and thriving mathematical discipline, and the underlying theory of current computational optimization techniques grows ever more sophisticated. This book aims to provide a concise, accessible account of convex analysis and its applications and extensions, for a broad audience. Each section concludes with an often extensive set of optional exercises. This new edition adds material on semismooth optimization, as well as several new proofs.
Download or read book Convexification and Global Optimization in Continuous and Mixed Integer Nonlinear Programming written by Mohit Tawarmalani and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: Interest in constrained optimization originated with the simple linear pro gramming model since it was practical and perhaps the only computationally tractable model at the time. Constrained linear optimization models were soon adopted in numerous application areas and are perhaps the most widely used mathematical models in operations research and management science at the time of this writing. Modelers have, however, found the assumption of linearity to be overly restrictive in expressing the real-world phenomena and problems in economics, finance, business, communication, engineering design, computational biology, and other areas that frequently demand the use of nonlinear expressions and discrete variables in optimization models. Both of these extensions of the linear programming model are NP-hard, thus representing very challenging problems. On the brighter side, recent advances in algorithmic and computing technology make it possible to re visit these problems with the hope of solving practically relevant problems in reasonable amounts of computational time. Initial attempts at solving nonlinear programs concentrated on the de velopment of local optimization methods guaranteeing globality under the assumption of convexity. On the other hand, the integer programming liter ature has concentrated on the development of methods that ensure global optima. The aim of this book is to marry the advancements in solving nonlinear and integer programming models and to develop new results in the more general framework of mixed-integer nonlinear programs (MINLPs) with the goal of devising practically efficient global optimization algorithms for MINLPs.
Download or read book Nonlinear Integer Programming written by Duan Li and published by Springer Science & Business Media. This book was released on 2006-08-13 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: A combination of both Integer Programming and Nonlinear Optimization, this is a powerful book that surveys the field and provides a state-of-the-art treatment of Nonlinear Integer Programming. It is the first book available on the subject. The book aims to bring the theoretical foundation and solution methods for nonlinear integer programming to students and researchers in optimization, operations research, and computer science.
Download or read book Nonlinear Optimization Applications Using the GAMS Technology written by Neculai Andrei and published by Springer Science & Business Media. This book was released on 2013-06-22 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here is a collection of nonlinear optimization applications from the real world, expressed in the General Algebraic Modeling System (GAMS). The concepts are presented so that the reader can quickly modify and update them to represent real-world situations.
Download or read book Applied Nonlinear Programming written by David Mautner Himmelblau and published by McGraw-Hill Companies. This book was released on 1972 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Mixed Integer Nonlinear Programming written by Jon Lee and published by Springer Science & Business Media. This book was released on 2011-12-02 with total page 687 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many engineering, operations, and scientific applications include a mixture of discrete and continuous decision variables and nonlinear relationships involving the decision variables that have a pronounced effect on the set of feasible and optimal solutions. Mixed-integer nonlinear programming (MINLP) problems combine the numerical difficulties of handling nonlinear functions with the challenge of optimizing in the context of nonconvex functions and discrete variables. MINLP is one of the most flexible modeling paradigms available for optimization; but because its scope is so broad, in the most general cases it is hopelessly intractable. Nonetheless, an expanding body of researchers and practitioners — including chemical engineers, operations researchers, industrial engineers, mechanical engineers, economists, statisticians, computer scientists, operations managers, and mathematical programmers — are interested in solving large-scale MINLP instances.
Download or read book Linear and Nonlinear Programming written by Stephen G. Nash and published by McGraw-Hill Science, Engineering & Mathematics. This book was released on 1996 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: A complete and unified introduction to applications, theory and algorithms which contains modelling examples, computer based exercises and material on interior point methods and trust-region methods. Gives both numerical methods for optimisation and optomisation problems.
Download or read book Nonlinear Optimization written by Francisco J. Aragón and published by Springer. This book was released on 2019-02-27 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook on nonlinear optimization focuses on model building, real world problems, and applications of optimization models to natural and social sciences. Organized into two parts, this book may be used as a primary text for courses on convex optimization and non-convex optimization. Definitions, proofs, and numerical methods are well illustrated and all chapters contain compelling exercises. The exercises emphasize fundamental theoretical results on optimality and duality theorems, numerical methods with or without constraints, and derivative-free optimization. Selected solutions are given. Applications to theoretical results and numerical methods are highlighted to help students comprehend methods and techniques.