Download or read book Forecasting Structural Time Series Models and the Kalman Filter written by Andrew C. Harvey and published by Cambridge University Press. This book was released on 1990 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt: A synthesis of concepts and materials, that ordinarily appear separately in time series and econometrics literature, presents a comprehensive review of theoretical and applied concepts in modeling economic and social time series.
Download or read book Non Gaussian Autoregressive Type Time Series written by N. Balakrishna and published by Springer Nature. This book was released on 2022-01-27 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together a variety of non-Gaussian autoregressive-type models to analyze time-series data. This book collects and collates most of the available models in the field and provide their probabilistic and inferential properties. This book classifies the stationary time-series models into different groups such as linear stationary models with non-Gaussian innovations, linear stationary models with non-Gaussian marginal distributions, product autoregressive models and minification models. Even though several non-Gaussian time-series models are available in the literature, most of them are focusing on the model structure and the probabilistic properties.
Download or read book Time Series Analysis by State Space Methods written by James Durbin and published by OUP Oxford. This book was released on 2012-05-03 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edition updates Durbin & Koopman's important text on the state space approach to time series analysis. The distinguishing feature of state space time series models is that observations are regarded as made up of distinct components such as trend, seasonal, regression elements and disturbance terms, each of which is modelled separately. The techniques that emerge from this approach are very flexible and are capable of handling a much wider range of problems than the main analytical system currently in use for time series analysis, the Box-Jenkins ARIMA system. Additions to this second edition include the filtering of nonlinear and non-Gaussian series. Part I of the book obtains the mean and variance of the state, of a variable intended to measure the effect of an interaction and of regression coefficients, in terms of the observations. Part II extends the treatment to nonlinear and non-normal models. For these, analytical solutions are not available so methods are based on simulation.
Download or read book Structural Vector Autoregressive Analysis written by Lutz Kilian and published by Cambridge University Press. This book was released on 2017-11-23 with total page 757 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the econometric foundations of structural vector autoregressive modeling, as used in empirical macroeconomics, finance, and related fields.
Download or read book Financial Modeling Under Non Gaussian Distributions written by Eric Jondeau and published by Springer Science & Business Media. This book was released on 2007-04-05 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines non-Gaussian distributions. It addresses the causes and consequences of non-normality and time dependency in both asset returns and option prices. The book is written for non-mathematicians who want to model financial market prices so the emphasis throughout is on practice. There are abundant empirical illustrations of the models and techniques described, many of which could be equally applied to other financial time series.
Download or read book Introduction to Time Series Modeling written by Genshiro Kitagawa and published by CRC Press. This book was released on 2010-04-21 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: In time series modeling, the behavior of a certain phenomenon is expressed in relation to the past values of itself and other covariates. Since many important phenomena in statistical analysis are actually time series and the identification of conditional distribution of the phenomenon is an essential part of the statistical modeling, it is very im
Download or read book Introduction to Time Series Modeling with Applications in R written by Genshiro Kitagawa and published by CRC Press. This book was released on 2020-08-10 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the first edition: [This book] reflects the extensive experience and significant contributions of the author to non-linear and non-Gaussian modeling. ... [It] is a valuable book, especially with its broad and accessible introduction of models in the state-space framework. –Statistics in Medicine What distinguishes this book from comparable introductory texts is the use of state-space modeling. Along with this come a number of valuable tools for recursive filtering and smoothing, including the Kalman filter, as well as non-Gaussian and sequential Monte Carlo filters. –MAA Reviews Introduction to Time Series Modeling with Applications in R, Second Edition covers numerous stationary and nonstationary time series models and tools for estimating and utilizing them. The goal of this book is to enable readers to build their own models to understand, predict and master time series. The second edition makes it possible for readers to reproduce examples in this book by using the freely available R package TSSS to perform computations for their own real-world time series problems. This book employs the state-space model as a generic tool for time series modeling and presents the Kalman filter, the non-Gaussian filter and the particle filter as convenient tools for recursive estimation for state-space models. Further, it also takes a unified approach based on the entropy maximization principle and employs various methods of parameter estimation and model selection, including the least squares method, the maximum likelihood method, recursive estimation for state-space models and model selection by AIC. Along with the standard stationary time series models, such as the AR and ARMA models, the book also introduces nonstationary time series models such as the locally stationary AR model, the trend model, the seasonal adjustment model, the time-varying coefficient AR model and nonlinear non-Gaussian state-space models. About the Author: Genshiro Kitagawa is a project professor at the University of Tokyo, the former Director-General of the Institute of Statistical Mathematics, and the former President of the Research Organization of Information and Systems.
Download or read book Readings in Unobserved Components Models written by Andrew C. Harvey and published by Oxford University Press, USA. This book was released on 2005 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents a collection of readings which give the reader an idea of the nature and scope of unobserved components (UC) models and the methods used to deal with them. The book is intended to give a self-contained presentation of the methods and applicative issues. Harvey has made major contributions to this field and provides substantial introductions throughout the book to form a unified view of the literature. About the Series Advanced Texts in Econometrics is a distinguished and rapidly expanding series in which leading econometricians assess recent developments in such areas as stochastic probability, panel and time series data analysis, modeling, and cointegration. In both hardback and affordable paperback, each volume explains the nature and applicability of a topic in greater depth than possible in introductory textbooks or single journal articles. Each definitive work is formatted to be as accessible and convenient for those who are not familiar with the detailed primary literature.
Download or read book Handbook of Discrete Valued Time Series written by Richard A. Davis and published by CRC Press. This book was released on 2016-01-06 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Model a Wide Range of Count Time Series Handbook of Discrete-Valued Time Series presents state-of-the-art methods for modeling time series of counts and incorporates frequentist and Bayesian approaches for discrete-valued spatio-temporal data and multivariate data. While the book focuses on time series of counts, some of the techniques discussed ca
Download or read book Handbook of Economic Forecasting written by G. Elliott and published by Elsevier. This book was released on 2006-05-30 with total page 1071 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research on forecasting methods has made important progress over recent years and these developments are brought together in the Handbook of Economic Forecasting. The handbook covers developments in how forecasts are constructed based on multivariate time-series models, dynamic factor models, nonlinear models and combination methods. The handbook also includes chapters on forecast evaluation, including evaluation of point forecasts and probability forecasts and contains chapters on survey forecasts and volatility forecasts. Areas of applications of forecasts covered in the handbook include economics, finance and marketing.*Addresses economic forecasting methodology, forecasting models, forecasting with different data structures, and the applications of forecasting methods *Insights within this volume can be applied to economics, finance and marketing disciplines
Download or read book An Introduction to State Space Time Series Analysis written by Jacques J.F. Commandeur and published by Oxford University Press, USA. This book was released on 2007-07-19 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text provides an introduction to time series analysis using state space methodology to readers who are neither familiar with time series analysis, nor with state space methods. This is the first in a series of books designed to provide practitioners, researchers, and students with practical introductions to various topics in econometrics.
Download or read book Generalized Linear Models written by Dipak K. Dey and published by CRC Press. This book was released on 2000-05-25 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume describes how to conceptualize, perform, and critique traditional generalized linear models (GLMs) from a Bayesian perspective and how to use modern computational methods to summarize inferences using simulation. Introducing dynamic modeling for GLMs and containing over 1000 references and equations, Generalized Linear Models considers parametric and semiparametric approaches to overdispersed GLMs, presents methods of analyzing correlated binary data using latent variables. It also proposes a semiparametric method to model link functions for binary response data, and identifies areas of important future research and new applications of GLMs.
Download or read book Time Series Analysis by State Space Methods written by James Durbin and published by Oxford University Press. This book was released on 2001-06-21 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: State space time series analysis emerged in the 1960s in engineering, but its applications have spread to other fields. Durbin (statistics, London School of Economics and Political Science) and Koopman (econometrics, Free U., Amsterdam) extol the virtues of such models over the main analytical system currently used for time series data, Box-Jenkins' ARIMA. What distinguishes state space time models is that they separately model components such as trend, seasonal, regression elements and disturbance terms. Part I focuses on traditional and new techniques based on the linear Gaussian model. Part II presents new material extending the state space model to non-Gaussian observations. c. Book News Inc.
Download or read book Nonlinear and Nonstationary Signal Processing written by W. J. Fitzgerald and published by Cambridge University Press. This book was released on 2000 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: Signal processing, nonlinear data analysis, nonlinear time series, nonstationary processes.
Download or read book Economics Beyond the Millennium written by Alan P. Kirman and published by Clarendon Press. This book was released on 1999-09-09 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Economics: Beyond the Millennium contains articles by leading authorities in various fields of economic theory and econometrics, each of whom gives an account of the current state of the art in their own field and indicate the direction that they think it will take in the next ten years. The fields covered are grouped into three categories: the microfoundations of macroeconomics, where Malinvaud evaluates the theory of resource allocation and Hildenbrand examines the empirical content of economic thories; markets and and organizations, where both Gabszewicz and D'Aspremont et al. look at imperfect competition and general equilibrium, Scotchmer and Thiess consider spatial economics, Ponssard the future of managerial economics, while Van Damme looks at the next stage of game theory; and econometrics, where Gourieroux reviews econometric modelling in general, Maravall looks at time series, Lubrand and Bauwens examine Bayesian analysis, and Blundell looks at the rapidly expanding area of microeconometrics.
Download or read book Bayesian Signal Processing written by James V. Candy and published by John Wiley & Sons. This book was released on 2016-06-20 with total page 712 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents the Bayesian approach to statistical signal processing for a variety of useful model sets This book aims to give readers a unified Bayesian treatment starting from the basics (Baye’s rule) to the more advanced (Monte Carlo sampling), evolving to the next-generation model-based techniques (sequential Monte Carlo sampling). This next edition incorporates a new chapter on “Sequential Bayesian Detection,” a new section on “Ensemble Kalman Filters” as well as an expansion of Case Studies that detail Bayesian solutions for a variety of applications. These studies illustrate Bayesian approaches to real-world problems incorporating detailed particle filter designs, adaptive particle filters and sequential Bayesian detectors. In addition to these major developments a variety of sections are expanded to “fill-in-the gaps” of the first edition. Here metrics for particle filter (PF) designs with emphasis on classical “sanity testing” lead to ensemble techniques as a basic requirement for performance analysis. The expansion of information theory metrics and their application to PF designs is fully developed and applied. These expansions of the book have been updated to provide a more cohesive discussion of Bayesian processing with examples and applications enabling the comprehension of alternative approaches to solving estimation/detection problems. The second edition of Bayesian Signal Processing features: “Classical” Kalman filtering for linear, linearized, and nonlinear systems; “modern” unscented and ensemble Kalman filters: and the “next-generation” Bayesian particle filters Sequential Bayesian detection techniques incorporating model-based schemes for a variety of real-world problems Practical Bayesian processor designs including comprehensive methods of performance analysis ranging from simple sanity testing and ensemble techniques to sophisticated information metrics New case studies on adaptive particle filtering and sequential Bayesian detection are covered detailing more Bayesian approaches to applied problem solving MATLAB® notes at the end of each chapter help readers solve complex problems using readily available software commands and point out other software packages available Problem sets included to test readers’ knowledge and help them put their new skills into practice Bayesian Signal Processing, Second Edition is written for all students, scientists, and engineers who investigate and apply signal processing to their everyday problems.
Download or read book State Space and Unobserved Component Models written by James Durbin and published by Cambridge University Press. This book was released on 2004-06-10 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive overview of developments in the theory and application of state space modeling, first published in 2004.