Download or read book Neuro fuzzy and Soft Computing written by Jyh-Shing Roger Jang and published by Pearson Education. This book was released on 1997 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neuro-Fuzzy and Soft Computing provides the first comprehensive treatment of the constituent methodologies underlying neuro-fuzzy and soft computing, an evolving branch of computational intelligence. The constituent methodologies include fuzzy set theory, neural networks, data clustering techniques, and several stochastic optimization methods that do not require gradient information. In particular, the authors put equal emphasis on theoretical aspects of covered methodologies, as well as empirical observations and verifications of various applications in practice. The book is well suited for use as a text for courses on computational intelligence and as a single reference source for this emerging field. To help readers understand the material the presentation includes more than 50 examples, more than 150 exercises, over 300 illustrations, and more than 150 Matlab scripts. In addition, Matlab is utilized to visualize the processes of fuzzy reasoning, neural-network learning, neuro-fuzzy integration and training, and gradient-free optimization (such as genetic algorithms, simulated annealing, random search, and downhill Simplex method). The presentation also makes use of SIMULINK for neuro-fuzzy control system simulations. All Matlab scripts used in the book are available on the free companion software disk that may be ordered by using the enclosed reply card. The book also contains an "Internet Resource Page" to point the reader to on-line neuro-fuzzy and soft computing home pages, publications, public-domain software, research institutes, news groups, etc. All the HTTP and FTP addresses are available as a bookmark file on the companion software disk.
Download or read book Neuro Fuzzy Pattern Recognition written by Sankar K. Pal and published by Wiley-Interscience. This book was released on 1999 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: The neuro-fuzzy approach to pattern recognition-a unique overview Recent years have seen a surge of interest in neuro-fuzzy computing, which combines fuzzy logic, neural networks, and soft computing techniques. This book focuses on the application of this new tool to the rapidly evolving area of pattern recognition. Written by two leaders in neural networks and soft computing research, this landmark work presents a unified, comprehensive treatment of the state of the art in the field. The authors consolidate a wealth of information previously cattered in disparate articles, journals, and edited volumes, explaining both the theory of neuro-fuzzy computing and the latest methodologies for performing different pattern recognition tasks in the neuro-fuzzy network-classification, feature evaluation, rule generation, knowledge extraction, and hybridization. Special emphasis is given to the integration of neuro-fuzzy methods with rough sets and genetic algorithms (GAs) to ensure more efficient recognition systems. Clear, concise, and fully referenced, Neuro-Fuzzy Pattern Recognition features extensive examples and highlights key applications in speech, machine learning, medicine, and forensic science. It is an extremely useful resource for scientists and engineers in laboratories and industry as well as for anyone seeking up-to-date information on the advantages of neuro-fuzzy pattern recognition in new computer technologies.
Download or read book Neuro Fuzzy Architectures and Hybrid Learning written by Danuta Rutkowska and published by Physica. This book was released on 2012-11-13 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: The advent of the computer age has set in motion a profound shift in our perception of science -its structure, its aims and its evolution. Traditionally, the principal domains of science were, and are, considered to be mathe matics, physics, chemistry, biology, astronomy and related disciplines. But today, and to an increasing extent, scientific progress is being driven by a quest for machine intelligence - for systems which possess a high MIQ (Machine IQ) and can perform a wide variety of physical and mental tasks with minimal human intervention. The role model for intelligent systems is the human mind. The influ ence of the human mind as a role model is clearly visible in the methodolo gies which have emerged, mainly during the past two decades, for the con ception, design and utilization of intelligent systems. At the center of these methodologies are fuzzy logic (FL); neurocomputing (NC); evolutionary computing (EC); probabilistic computing (PC); chaotic computing (CC); and machine learning (ML). Collectively, these methodologies constitute what is called soft computing (SC). In this perspective, soft computing is basically a coalition of methodologies which collectively provide a body of concepts and techniques for automation of reasoning and decision-making in an environment of imprecision, uncertainty and partial truth.
Download or read book Fuzzy and Neuro Fuzzy Intelligent Systems written by Ernest Czogala and published by Physica. This book was released on 2012-08-10 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intelligence systems. We perfonn routine tasks on a daily basis, as for example: • recognition of faces of persons (also faces not seen for many years), • identification of dangerous situations during car driving, • deciding to buy or sell stock, • reading hand-written symbols, • discriminating between vines made from Sauvignon Blanc, Syrah or Merlot grapes, and others. Human experts carry out the following: • diagnosing diseases, • localizing faults in electronic circuits, • optimal moves in chess games. It is possible to design artificial systems to replace or "duplicate" the human expert. There are many possible definitions of intelligence systems. One of them is that: an intelligence system is a system able to make decisions that would be regarded as intelligent ifthey were observed in humans. Intelligence systems adapt themselves using some example situations (inputs of a system) and their correct decisions (system's output). The system after this learning phase can make decisions automatically for future situations. This system can also perfonn tasks difficult or impossible to do for humans, as for example: compression of signals and digital channel equalization.
Download or read book Soft Computing And Its Applications written by Rafik Aziz Aliev and published by World Scientific Publishing Company. This book was released on 2001-09-06 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: The concept of soft computing is still in its initial stages of crystallization. Presently available books on soft computing are merely collections of chapters or articles about different aspects of the field. This book is the first to provide a systematic account of the major concepts and methodologies of soft computing, presenting a unified framework that makes the subject more accessible to students and practitioners. Particularly worthy of note is the inclusion of a wealth of information about neuro-fuzzy, neuro-genetic, fuzzy-genetic and neuro-fuzzy-genetic systems, with many illuminating applications and examples.
Download or read book Introduction to Neuro Fuzzy Systems written by Robert Fuller and published by Springer Science & Business Media. This book was released on 2000 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains introductory material to neuro-fuzzy systems. Its main purpose is to explain the information processing in mostly-used fuzzy inference systems, neural networks and neuro-fuzzy systems. More than 180 figures and a large number of (numerical) exercises (with solutions) have been inserted to explain the principles of fuzzy, neural and neuro-fuzzy systems. Also the mathematics applied in the models is carefully explained, and in many cases exact computational formulas have been derived for the rules in error correction learning procedures. Numerous models treated in the book will help the reader to design his own neuro-fuzzy system for his specific (managerial, industrial, financial) problem. The book can serve as a textbook for students in computer and management sciences who are interested in adaptive technologies.
Download or read book Computational Intelligence Soft Computing and Fuzzy Neuro Integration with Applications written by Okyay Kaynak and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: Soft computing is a consortium of computing methodologies that provide a foundation for the conception, design, and deployment of intelligent systems and aims to formalize the human ability to make rational decisions in an environment of uncertainty and imprecision. This book is based on a NATO Advanced Study Institute held in 1996 on soft computing and its applications. The distinguished contributors consider the principal constituents of soft computing, namely fuzzy logic, neurocomputing, genetic computing, and probabilistic reasoning, the relations between them, and their fusion in industrial applications. Two areas emphasized in the book are how to achieve a synergistic combination of the main constituents of soft computing and how the combination can be used to achieve a high Machine Intelligence Quotient.
Download or read book Recent Advances in Intelligent Paradigms and Applications written by Ajith Abraham and published by Physica. This book was released on 2013-03-20 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: Digital systems that bring together the computing capacity for processing large bodies of information with the human cognitive capability are called intelligent systems. Building these systems has become one of the great goals of modem technology. This goal has both intellectual and economic incentives. The need for such intelligent systems has become more intense in the face of the global connectivity of the internet. There has become an almost insatiable requirement for instantaneous information and decision brought about by this confluence of computing and communication. This requirement can only be satisfied by the construction of innovative intelligent systems. A second and perhaps an even more significant development is the great advances being made in genetics and related areas of biotechnology. Future developments in biotechnology may open the possibility for the development of a true human-silicon interaction at the micro level, neural and cellular, bringing about a need for "intelligent" systems. What is needed to further the development of intelligent systems are tools to enable the representation of human cognition in a manner that allows formal manipulation. The idea of developing such an algebra goes back to Leibniz in the 17th century with his dream of a calculus ratiocinator. It wasn't until two hundred years later beginning with the work of Boole, Cantor and Frege that a formal mathematical logic for modeling human reasoning was developed. The introduction of the modem digital computer during the Second World War by von Neumann and others was a culmination of this intellectual trend.
Download or read book Fuzzy Logic And Soft Computing written by Bernadette Bouchon-meunier and published by World Scientific. This book was released on 1995-09-15 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: Soft computing is a new, emerging discipline rooted in a group of technologies that aim to exploit the tolerance for imprecision and uncertainty in achieving solutions to complex problems. The principal components of soft computing are fuzzy logic, neurocomputing, genetic algorithms and probabilistic reasoning.This volume is a collection of up-to-date articles giving a snapshot of the current state of the field. It covers the whole expanse, from theoretical foundations to applications. The contributors are among the world leaders in the field.
Download or read book Soft Computing in Case Based Reasoning written by Sankar Kumar Pal and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text demonstrates how various soft computing tools can be applied to design and develop methodologies and systems with case based reasoning, that is, for real-life decision-making or recognition problems. Comprising contributions from experts, it introduces the basic concepts and theories, and includes many reports on real-life applications. This book is of interest to graduate students and researchers in computer science, electrical engineering and information technology, as well as researchers and practitioners from the fields of systems design, pattern recognition and data mining.
Download or read book Deep Neuro Fuzzy Systems with Python written by Himanshu Singh and published by Apress. This book was released on 2019-11-30 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gain insight into fuzzy logic and neural networks, and how the integration between the two models makes intelligent systems in the current world. This book simplifies the implementation of fuzzy logic and neural network concepts using Python. You’ll start by walking through the basics of fuzzy sets and relations, and how each member of the set has its own membership function values. You’ll also look at different architectures and models that have been developed, and how rules and reasoning have been defined to make the architectures possible. The book then provides a closer look at neural networks and related architectures, focusing on the various issues neural networks may encounter during training, and how different optimization methods can help you resolve them. In the last section of the book you’ll examine the integrations of fuzzy logics and neural networks, the adaptive neuro fuzzy Inference systems, and various approximations related to the same. You’ll review different types of deep neuro fuzzy classifiers, fuzzy neurons, and the adaptive learning capability of the neural networks. The book concludes by reviewing advanced neuro fuzzy models and applications. What You’ll Learn Understand fuzzy logic, membership functions, fuzzy relations, and fuzzy inferenceReview neural networks, back propagation, and optimizationWork with different architectures such as Takagi-Sugeno model, Hybrid model, genetic algorithms, and approximations Apply Python implementations of deep neuro fuzzy system Who This book Is For Data scientists and software engineers with a basic understanding of Machine Learning who want to expand into the hybrid applications of deep learning and fuzzy logic.
Download or read book Advance Trends in Soft Computing written by Mo Jamshidi and published by Springer. This book was released on 2013-11-18 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the proceedings of the 3rd World Conference on Soft Computing (WCSC), which was held in San Antonio, TX, USA, on December 16-18, 2013. It presents start-of-the-art theory and applications of soft computing together with an in-depth discussion of current and future challenges in the field, providing readers with a 360 degree view on soft computing. Topics range from fuzzy sets, to fuzzy logic, fuzzy mathematics, neuro-fuzzy systems, fuzzy control, decision making in fuzzy environments, image processing and many more. The book is dedicated to Lotfi A. Zadeh, a renowned specialist in signal analysis and control systems research who proposed the idea of fuzzy sets, in which an element may have a partial membership, in the early 1960s, followed by the idea of fuzzy logic, in which a statement can be true only to a certain degree, with degrees described by numbers in the interval [0,1]. The performance of fuzzy systems can often be improved with the help of optimization techniques, e.g. evolutionary computation, and by endowing the corresponding system with the ability to learn, e.g. by combining fuzzy systems with neural networks. The resulting “consortium” of fuzzy, evolutionary, and neural techniques is known as soft computing and is the main focus of this book.
Download or read book Emerging Trends and Applications in Cognitive Computing written by Mallick, Pradeep Kumar and published by IGI Global. This book was released on 2018-12-28 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: Though an individual can process a limitless amount of information, the human brain can only comprehend a small amount of data at a time. Using technology can improve the process and comprehension of information, but the technology must learn to behave more like a human brain to employ concepts like memory, learning, visualization ability, and decision making. Emerging Trends and Applications in Cognitive Computing is a fundamental scholarly source that provides empirical studies and theoretical analysis to show how learning methods can solve important application problems throughout various industries and explain how machine learning research is conducted. Including innovative research on topics such as deep neural networks, cyber-physical systems, and pattern recognition, this collection of research will benefit individuals such as IT professionals, academicians, students, researchers, and managers.
Download or read book Fuzzy Systems and Soft Computing in Nuclear Engineering written by Da Ruan and published by Springer Science & Business Media. This book was released on 2000-01-14 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an organized edited collection of twenty-one contributed chapters covering nuclear engineering applications of fuzzy systems, neural networks, genetic algorithms and other soft computing techniques. All chapters are either updated review or original contributions by leading researchers written exclusively for this volume. The volume highlights the advantages of applying fuzzy systems and soft computing in nuclear engineering, which can be viewed as complementary to traditional methods. As a result, fuzzy sets and soft computing provide a powerful tool for solving intricate problems pertaining in nuclear engineering. Each chapter of the book is self-contained and also indicates the future research direction on this topic of applications of fuzzy systems and soft computing in nuclear engineering.
Download or read book Fuzzy Systems Engineering written by Nadia Nedjah and published by Springer Science & Business Media. This book was released on 2005-05-20 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to reporting innovative and significant progress in fuzzy system engineering. Given the maturation of fuzzy logic, this book is dedicated to exploring the recent breakthroughs in fuzziness and soft computing in favour of intelligent system engineering. This monograph presents novel developments of the fuzzy theory as well as interesting applications of the fuzzy logic exploiting the theory to engineer intelligent systems.
Download or read book Soft Computing in Systems and Control Technology written by S. G. Tzafestas and published by World Scientific. This book was released on 1999 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Soft computing is a branch of computing which, unlike hard computing, can deal with uncertain, imprecise and inexact data. The three constituents of soft computing are fuzzy-logic-based computing, neurocomputing, and genetic algorithms. Fuzzy logic contributes the capability of approximate reasoning, neurocomputing offers function approximation and learning capabilities, and genetic algorithms provide a methodology for systematic random search and optimization. These three capabilities are combined in a complementary and synergetic fashion.This book presents a cohesive set of contributions dealing with important issues and applications of soft computing in systems and control technology. The contributions include state-of-the-art material, mathematical developments, fresh results, and how-to-do issues. Among the problems studied via neural, fuzzy, neurofuzzy and genetic methodologies are: data fusion, reinforcement learning, approximation properties, multichannel imaging, signal processing, system optimization, gaming, and several forms of control.The book can serve as a reference for researchers and practitioners in the field. Readers can find in it a large amount of useful and timely information, and thus save considerable effort in searching for other scattered literature.
Download or read book NEURAL NETWORKS FUZZY LOGIC AND GENETIC ALGORITHM written by S. RAJASEKARAN and published by PHI Learning Pvt. Ltd.. This book was released on 2003-01-01 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides comprehensive introduction to a consortium of technologies underlying soft computing, an evolving branch of computational intelligence. The constituent technologies discussed comprise neural networks, fuzzy logic, genetic algorithms, and a number of hybrid systems which include classes such as neuro-fuzzy, fuzzy-genetic, and neuro-genetic systems. The hybridization of the technologies is demonstrated on architectures such as Fuzzy-Back-propagation Networks (NN-FL), Simplified Fuzzy ARTMAP (NN-FL), and Fuzzy Associative Memories. The book also gives an exhaustive discussion of FL-GA hybridization. Every architecture has been discussed in detail through illustrative examples and applications. The algorithms have been presented in pseudo-code with a step-by-step illustration of the same in problems. The applications, demonstrative of the potential of the architectures, have been chosen from diverse disciplines of science and engineering. This book with a wealth of information that is clearly presented and illustrated by many examples and applications is designed for use as a text for courses in soft computing at both the senior undergraduate and first-year post-graduate engineering levels. It should also be of interest to researchers and technologists desirous of applying soft computing technologies to their respective fields of work.