Download or read book MATLAB Deep Learning written by Phil Kim and published by Apress. This book was released on 2017-06-15 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get started with MATLAB for deep learning and AI with this in-depth primer. In this book, you start with machine learning fundamentals, then move on to neural networks, deep learning, and then convolutional neural networks. In a blend of fundamentals and applications, MATLAB Deep Learning employs MATLAB as the underlying programming language and tool for the examples and case studies in this book. With this book, you'll be able to tackle some of today's real world big data, smart bots, and other complex data problems. You’ll see how deep learning is a complex and more intelligent aspect of machine learning for modern smart data analysis and usage. What You'll Learn Use MATLAB for deep learning Discover neural networks and multi-layer neural networks Work with convolution and pooling layers Build a MNIST example with these layers Who This Book Is For Those who want to learn deep learning using MATLAB. Some MATLAB experience may be useful.
Download or read book Neural Networks Applications and Examples Using MATLAB written by J. Smith and published by Createspace Independent Publishing Platform. This book was released on 2017-02-24 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: MATLAB has the tool Neural Network Toolbox that provides algorithms, functions, and apps to create, train, visualize, and simulate neural networks. You can perform classification, regression, clustering, dimensionality reduction, time-series forecasting, and dynamic system modeling and control. The toolbox includes convolutional neural network and autoencoder deep learning algorithms for image classification and feature learning tasks. To speed up training of large data sets, you can distribute computations and data across multicore processors, GPUs, and computer clusters using Parallel Computing Toolbox. The more important features are the following: *Deep learning, including convolutional neural networks and autoencoders *Parallel computing and GPU support for accelerating training (with Parallel Computing Toolbox) *Supervised learning algorithms, including multilayer, radial basis, learning vector quantization (LVQ), time-delay, nonlinear autoregressive (NARX), and recurrent neural network (RNN) *Unsupervised learning algorithms, including self-organizing maps and competitive layers *Apps for data-fitting, pattern recognition, and clustering *Preprocessing, postprocessing, and network visualization for improving training efficiency and assessing network performance *Simulink(r) blocks for building and evaluating neural networks and for control systems applications
Download or read book Introduction to Neural Networks Using Matlab 6 0 written by S. N. Sivanandam and published by Tata McGraw-Hill Education. This book was released on 2006 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Computer Neural Networks on MATLAB written by Daniel Okoh and published by Createspace Independent Publishing Platform. This book was released on 2016-10-07 with total page 54 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer neural networks are a branch of artificial intelligence, inspired to behave in a manner similar to the human brain; they are trained and they learn from their training. Computer neural networks have a wide variety of applications, mostly hinged around modelling, forecasting, and general predictions. This book illustrates how to use computer neural networks on MATLAB in very simple and elegant manner. The language of the book is elementary as it is meant for beginners, readers are notassumed to have previous skills on the subject. Projects, in varying degrees, have been used to make sure that readers get a practical and hands-on experience on the subject. The book is meant for you if you want to get a quick start with the practical use of computer neural networks on MATLAB without the boredom associated with a lengthy theoretical write-up.
Download or read book Computational Methods for Deep Learning written by Wei Qi Yan and published by Springer Nature. This book was released on 2020-12-04 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integrating concepts from deep learning, machine learning, and artificial neural networks, this highly unique textbook presents content progressively from easy to more complex, orienting its content about knowledge transfer from the viewpoint of machine intelligence. It adopts the methodology from graphical theory, mathematical models, and algorithmic implementation, as well as covers datasets preparation, programming, results analysis and evaluations. Beginning with a grounding about artificial neural networks with neurons and the activation functions, the work then explains the mechanism of deep learning using advanced mathematics. In particular, it emphasizes how to use TensorFlow and the latest MATLAB deep-learning toolboxes for implementing deep learning algorithms. As a prerequisite, readers should have a solid understanding especially of mathematical analysis, linear algebra, numerical analysis, optimizations, differential geometry, manifold, and information theory, as well as basic algebra, functional analysis, and graphical models. This computational knowledge will assist in comprehending the subject matter not only of this text/reference, but also in relevant deep learning journal articles and conference papers. This textbook/guide is aimed at Computer Science research students and engineers, as well as scientists interested in deep learning for theoretic research and analysis. More generally, this book is also helpful for those researchers who are interested in machine intelligence, pattern analysis, natural language processing, and machine vision. Dr. Wei Qi Yan is an Associate Professor in the Department of Computer Science at Auckland University of Technology, New Zealand. His other publications include the Springer title, Visual Cryptography for Image Processing and Security.
Download or read book Dynamical Systems with Applications using MATLAB written by Stephen Lynch and published by Springer. This book was released on 2014-07-22 with total page 519 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook, now in its second edition, provides a broad introduction to both continuous and discrete dynamical systems, the theory of which is motivated by examples from a wide range of disciplines. It emphasizes applications and simulation utilizing MATLAB®, Simulink®, the Image Processing Toolbox® and the Symbolic Math toolbox®, including MuPAD. Features new to the second edition include · sections on series solutions of ordinary differential equations, perturbation methods, normal forms, Gröbner bases, and chaos synchronization; · chapters on image processing and binary oscillator computing; · hundreds of new illustrations, examples, and exercises with solutions; and · over eighty up-to-date MATLAB program files and Simulink model files available online. These files were voted MATLAB Central Pick of the Week in July 2013. The hands-on approach of Dynamical Systems with Applications using MATLAB, Second Edition, has minimal prerequisites, only requiring familiarity with ordinary differential equations. It will appeal to advanced undergraduate and graduate students, applied mathematicians, engineers, and researchers in a broad range of disciplines such as population dynamics, biology, chemistry, computing, economics, nonlinear optics, neural networks, and physics. Praise for the first edition Summing up, it can be said that this text allows the reader to have an easy and quick start to the huge field of dynamical systems theory. MATLAB/SIMULINK facilitate this approach under the aspect of learning by doing. —OR News/Operations Research Spectrum The MATLAB programs are kept as simple as possible and the author's experience has shown that this method of teaching using MATLAB works well with computer laboratory classes of small sizes.... I recommend ‘Dynamical Systems with Applications using MATLAB’ as a good handbook for a diverse readership: graduates and professionals in mathematics, physics, science and engineering. —Mathematica
Download or read book MATLAB for Machine Learning written by Giuseppe Ciaburro and published by Packt Publishing Ltd. This book was released on 2017-08-28 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Extract patterns and knowledge from your data in easy way using MATLAB About This Book Get your first steps into machine learning with the help of this easy-to-follow guide Learn regression, clustering, classification, predictive analytics, artificial neural networks and more with MATLAB Understand how your data works and identify hidden layers in the data with the power of machine learning. Who This Book Is For This book is for data analysts, data scientists, students, or anyone who is looking to get started with machine learning and want to build efficient data processing and predicting applications. A mathematical and statistical background will really help in following this book well. What You Will Learn Learn the introductory concepts of machine learning. Discover different ways to transform data using SAS XPORT, import and export tools, Explore the different types of regression techniques such as simple & multiple linear regression, ordinary least squares estimation, correlations and how to apply them to your data. Discover the basics of classification methods and how to implement Naive Bayes algorithm and Decision Trees in the Matlab environment. Uncover how to use clustering methods like hierarchical clustering to grouping data using the similarity measures. Know how to perform data fitting, pattern recognition, and clustering analysis with the help of MATLAB Neural Network Toolbox. Learn feature selection and extraction for dimensionality reduction leading to improved performance. In Detail MATLAB is the language of choice for many researchers and mathematics experts for machine learning. This book will help you build a foundation in machine learning using MATLAB for beginners. You'll start by getting your system ready with t he MATLAB environment for machine learning and you'll see how to easily interact with the Matlab workspace. We'll then move on to data cleansing, mining and analyzing various data types in machine learning and you'll see how to display data values on a plot. Next, you'll get to know about the different types of regression techniques and how to apply them to your data using the MATLAB functions. You'll understand the basic concepts of neural networks and perform data fitting, pattern recognition, and clustering analysis. Finally, you'll explore feature selection and extraction techniques for dimensionality reduction for performance improvement. At the end of the book, you will learn to put it all together into real-world cases covering major machine learning algorithms and be comfortable in performing machine learning with MATLAB. Style and approach The book takes a very comprehensive approach to enhance your understanding of machine learning using MATLAB. Sufficient real-world examples and use cases are included in the book to help you grasp the concepts quickly and apply them easily in your day-to-day work.
Download or read book NETLAB written by Ian Nabney and published by Springer Science & Business Media. This book was released on 2002 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Getting the most out of neural networks and related data modelling techniques is the purpose of this book. The text, with the accompanying Netlab toolbox, provides all the necessary tools and knowledge. Throughout, the emphasis is on methods that are relevant to the practical application of neural networks to pattern analysis problems. All parts of the toolbox interact in a coherent way, and implementations and descriptions of standard statistical techniques are provided so that they can be used as benchmarks against which more sophisticated algorithms can be evaluated. Plenty of examples and demonstration programs illustrate the theory and help the reader understand the algorithms and how to apply them.
Download or read book Big Data Analytics written by C. Perez and published by CESAR PEREZ. This book was released on 2020-05-31 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big data analytics is the process of collecting, organizing and analyzing large sets of data (called big data) to discover patterns and other useful information. Big data analytics can help organizations to better understand the information contained within the data and will also help identify the data that is most important to the business and future business decisions. Analysts working with big data basically want the knowledge that comes from analyzing the data.To analyze such a large volume of data, big data analytics is typically performed using specialized software tools and applications for predictive analytics, data mining, text mining, forecasting and data optimization. Collectively these processes are separate but highly integrated functions of high-performance analytics. Using big data tools and software enables an organization to process extremely large volumes of data that a business has collected to determine which data is relevant and can be analyzed to drive better business decisions in the future. Among all these tools highlights MATLAB. MATLAB implements various toolboxes for working on big data analytics, such as Statistics Toolbox and Neural Network Toolbox (Deep Learning Toolbox for version 18) . This book develops the work capabilities of MATLAB with Neural Networks and Big Data.
Download or read book Computational Intelligence Paradigms written by S. Sumathi and published by CRC Press. This book was released on 2010-01-05 with total page 853 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offering a wide range of programming examples implemented in MATLAB, Computational Intelligence Paradigms: Theory and Applications Using MATLAB presents theoretical concepts and a general framework for computational intelligence (CI) approaches, including artificial neural networks, fuzzy systems, evolutionary computation, genetic algorithms and pr
Download or read book Dynamical Systems with Applications using MATLAB written by Stephen Lynch and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to dynamical systems theory guides readers through theory via example and the graphical MATLAB interface; the SIMULINK® accessory is used to simulate real-world dynamical processes. Examples included are from mechanics, electrical circuits, economics, population dynamics, epidemiology, nonlinear optics, materials science and neural networks. The book contains over 330 illustrations, 300 examples, and exercises with solutions.
Download or read book Neural Networks in Finance written by Paul D. McNelis and published by Academic Press. This book was released on 2005-01-05 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the intuitive appeal of neural networks and the genetic algorithm in finance. It demonstrates how neural networks used in combination with evolutionary computation outperform classical econometric methods for accuracy in forecasting, classification and dimensionality reduction. McNelis utilizes a variety of examples, from forecasting automobile production and corporate bond spread, to inflation and deflation processes in Hong Kong and Japan, to credit card default in Germany to bank failures in Texas, to cap-floor volatilities in New York and Hong Kong. * Offers a balanced, critical review of the neural network methods and genetic algorithms used in finance * Includes numerous examples and applications * Numerical illustrations use MATLAB code and the book is accompanied by a website
Download or read book Computational Intelligence Paradigms written by S.. PANEERSELVAM SUMATHI (SUREKHA.) and published by CRC Press. This book was released on 2019-08-30 with total page 851 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offering a wide range of programming examples implemented in MATLAB(R), Computational Intelligence Paradigms: Theory and Applications Using MATLAB(R) presents theoretical concepts and a general framework for computational intelligence (CI) approaches, including artificial neural networks, fuzzy systems, evolutionary computation, genetic algorithms and programming, and swarm intelligence. It covers numerous intelligent computing methodologies and algorithms used in CI research. The book first focuses on neural networks, including common artificial neural networks; neural networks based on data classification, data association, and data conceptualization; and real-world applications of neural networks. It then discusses fuzzy sets, fuzzy rules, applications of fuzzy systems, and different types of fused neuro-fuzzy systems, before providing MATLAB illustrations of ANFIS, classification and regression trees, fuzzy c-means clustering algorithms, fuzzy ART map, and Takagi-Sugeno inference systems. The authors also describe the history, advantages, and disadvantages of evolutionary computation and include solved MATLAB programs to illustrate the implementation of evolutionary computation in various problems. After exploring the operators and parameters of genetic algorithms, they cover the steps and MATLAB routines of genetic programming. The final chapter introduces swarm intelligence and its applications, particle swarm optimization, and ant colony optimization. Full of worked examples and end-of-chapter questions, this comprehensive book explains how to use MATLAB to implement CI techniques for the solution of biological problems. It will help readers with their work on evolution dynamics, self-organization, natural and artificial morphogenesis, emergent collective behaviors, swarm intelligence, evolutionary strategies, genetic programming, and the evolution of social behaviors.
Download or read book The Perceptron written by Frank Rosenblatt and published by . This book was released on 1958 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Deep Learning Applications Volume 2 written by M. Arif Wani and published by Springer. This book was released on 2020-12-14 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents selected papers from the 18th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2019). It focuses on deep learning networks and their application in domains such as healthcare, security and threat detection, fault diagnosis and accident analysis, and robotic control in industrial environments, and highlights novel ways of using deep neural networks to solve real-world problems. Also offering insights into deep learning architectures and algorithms, it is an essential reference guide for academic researchers, professionals, software engineers in industry, and innovative product developers.
Download or read book Application of Signal Processing Tools and Artificial Neural Network in Diagnosis of Power System Faults written by Nabamita Banerjee Roy and published by CRC Press. This book was released on 2021-07-21 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explores methods of fault identification through programming and simulation in MATLAB Examines signal processing tools and their applications with examples Provides knowledge of artificial neural networks and their applications with illustrations Uses PNN and BPNN to identify the different types of faults and obtain their corresponding locations Discusses the programming of signal processing using Wavelet Transform and S-Transform
Download or read book MATLAB Machine Learning written by Michael Paluszek and published by Apress. This book was released on 2016-12-28 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a comprehensive guide to machine learning with worked examples in MATLAB. It starts with an overview of the history of Artificial Intelligence and automatic control and how the field of machine learning grew from these. It provides descriptions of all major areas in machine learning. The book reviews commercially available packages for machine learning and shows how they fit into the field. The book then shows how MATLAB can be used to solve machine learning problems and how MATLAB graphics can enhance the programmer’s understanding of the results and help users of their software grasp the results. Machine Learning can be very mathematical. The mathematics for each area is introduced in a clear and concise form so that even casual readers can understand the math. Readers from all areas of engineering will see connections to what they know and will learn new technology. The book then provides complete solutions in MATLAB for several important problems in machine learning including face identification, autonomous driving, and data classification. Full source code is provided for all of the examples and applications in the book. What you'll learn: An overview of the field of machine learning Commercial and open source packages in MATLAB How to use MATLAB for programming and building machine learning applications MATLAB graphics for machine learning Practical real world examples in MATLAB for major applications of machine learning in big data Who is this book for: The primary audiences are engineers and engineering students wanting a comprehensive and practical introduction to machine learning.