EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Neural Networks and Learning Algorithms in MATLAB

Download or read book Neural Networks and Learning Algorithms in MATLAB written by Ardashir Mohammadazadeh and published by Springer Nature. This book was released on 2022-12-10 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains the basic concepts, theory and applications of neural networks in a simple unified approach with clear examples and simulations in the MATLAB programming language. The scripts herein are coded for general purposes to be easily extended to a variety of problems in different areas of application. They are vectorized and optimized to run faster and be applicable to high-dimensional engineering problems. This book will serve as a main reference for graduate and undergraduate courses in neural networks and applications. This book will also serve as a main basis for researchers dealing with complex problems that require neural networks for finding good solutions in areas, such as time series prediction, intelligent control and identification. In addition, the problem of designing neural network by using metaheuristics, such as the genetic algorithms and particle swarm optimization, with one objective and with multiple objectives, is presented.

Book MATLAB Deep Learning

Download or read book MATLAB Deep Learning written by Phil Kim and published by Apress. This book was released on 2017-06-15 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get started with MATLAB for deep learning and AI with this in-depth primer. In this book, you start with machine learning fundamentals, then move on to neural networks, deep learning, and then convolutional neural networks. In a blend of fundamentals and applications, MATLAB Deep Learning employs MATLAB as the underlying programming language and tool for the examples and case studies in this book. With this book, you'll be able to tackle some of today's real world big data, smart bots, and other complex data problems. You’ll see how deep learning is a complex and more intelligent aspect of machine learning for modern smart data analysis and usage. What You'll Learn Use MATLAB for deep learning Discover neural networks and multi-layer neural networks Work with convolution and pooling layers Build a MNIST example with these layers Who This Book Is For Those who want to learn deep learning using MATLAB. Some MATLAB experience may be useful.

Book Computational Methods for Deep Learning

Download or read book Computational Methods for Deep Learning written by Wei Qi Yan and published by Springer Nature. This book was released on 2020-12-04 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integrating concepts from deep learning, machine learning, and artificial neural networks, this highly unique textbook presents content progressively from easy to more complex, orienting its content about knowledge transfer from the viewpoint of machine intelligence. It adopts the methodology from graphical theory, mathematical models, and algorithmic implementation, as well as covers datasets preparation, programming, results analysis and evaluations. Beginning with a grounding about artificial neural networks with neurons and the activation functions, the work then explains the mechanism of deep learning using advanced mathematics. In particular, it emphasizes how to use TensorFlow and the latest MATLAB deep-learning toolboxes for implementing deep learning algorithms. As a prerequisite, readers should have a solid understanding especially of mathematical analysis, linear algebra, numerical analysis, optimizations, differential geometry, manifold, and information theory, as well as basic algebra, functional analysis, and graphical models. This computational knowledge will assist in comprehending the subject matter not only of this text/reference, but also in relevant deep learning journal articles and conference papers. This textbook/guide is aimed at Computer Science research students and engineers, as well as scientists interested in deep learning for theoretic research and analysis. More generally, this book is also helpful for those researchers who are interested in machine intelligence, pattern analysis, natural language processing, and machine vision. Dr. Wei Qi Yan is an Associate Professor in the Department of Computer Science at Auckland University of Technology, New Zealand. His other publications include the Springer title, Visual Cryptography for Image Processing and Security.

Book MATLAB for Machine Learning

Download or read book MATLAB for Machine Learning written by Giuseppe Ciaburro and published by Packt Publishing Ltd. This book was released on 2017-08-28 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Extract patterns and knowledge from your data in easy way using MATLAB About This Book Get your first steps into machine learning with the help of this easy-to-follow guide Learn regression, clustering, classification, predictive analytics, artificial neural networks and more with MATLAB Understand how your data works and identify hidden layers in the data with the power of machine learning. Who This Book Is For This book is for data analysts, data scientists, students, or anyone who is looking to get started with machine learning and want to build efficient data processing and predicting applications. A mathematical and statistical background will really help in following this book well. What You Will Learn Learn the introductory concepts of machine learning. Discover different ways to transform data using SAS XPORT, import and export tools, Explore the different types of regression techniques such as simple & multiple linear regression, ordinary least squares estimation, correlations and how to apply them to your data. Discover the basics of classification methods and how to implement Naive Bayes algorithm and Decision Trees in the Matlab environment. Uncover how to use clustering methods like hierarchical clustering to grouping data using the similarity measures. Know how to perform data fitting, pattern recognition, and clustering analysis with the help of MATLAB Neural Network Toolbox. Learn feature selection and extraction for dimensionality reduction leading to improved performance. In Detail MATLAB is the language of choice for many researchers and mathematics experts for machine learning. This book will help you build a foundation in machine learning using MATLAB for beginners. You'll start by getting your system ready with t he MATLAB environment for machine learning and you'll see how to easily interact with the Matlab workspace. We'll then move on to data cleansing, mining and analyzing various data types in machine learning and you'll see how to display data values on a plot. Next, you'll get to know about the different types of regression techniques and how to apply them to your data using the MATLAB functions. You'll understand the basic concepts of neural networks and perform data fitting, pattern recognition, and clustering analysis. Finally, you'll explore feature selection and extraction techniques for dimensionality reduction for performance improvement. At the end of the book, you will learn to put it all together into real-world cases covering major machine learning algorithms and be comfortable in performing machine learning with MATLAB. Style and approach The book takes a very comprehensive approach to enhance your understanding of machine learning using MATLAB. Sufficient real-world examples and use cases are included in the book to help you grasp the concepts quickly and apply them easily in your day-to-day work.

Book NETLAB

    Book Details:
  • Author : Ian Nabney
  • Publisher : Springer Science & Business Media
  • Release : 2002
  • ISBN : 9781852334406
  • Pages : 444 pages

Download or read book NETLAB written by Ian Nabney and published by Springer Science & Business Media. This book was released on 2002 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Getting the most out of neural networks and related data modelling techniques is the purpose of this book. The text, with the accompanying Netlab toolbox, provides all the necessary tools and knowledge. Throughout, the emphasis is on methods that are relevant to the practical application of neural networks to pattern analysis problems. All parts of the toolbox interact in a coherent way, and implementations and descriptions of standard statistical techniques are provided so that they can be used as benchmarks against which more sophisticated algorithms can be evaluated. Plenty of examples and demonstration programs illustrate the theory and help the reader understand the algorithms and how to apply them.

Book Deep Learning Applications  Volume 2

Download or read book Deep Learning Applications Volume 2 written by M. Arif Wani and published by Springer. This book was released on 2020-12-14 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents selected papers from the 18th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2019). It focuses on deep learning networks and their application in domains such as healthcare, security and threat detection, fault diagnosis and accident analysis, and robotic control in industrial environments, and highlights novel ways of using deep neural networks to solve real-world problems. Also offering insights into deep learning architectures and algorithms, it is an essential reference guide for academic researchers, professionals, software engineers in industry, and innovative product developers.

Book The Perceptron

Download or read book The Perceptron written by Frank Rosenblatt and published by . This book was released on 1958 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book MATLAB Machine Learning

Download or read book MATLAB Machine Learning written by Michael Paluszek and published by Apress. This book was released on 2016-12-28 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a comprehensive guide to machine learning with worked examples in MATLAB. It starts with an overview of the history of Artificial Intelligence and automatic control and how the field of machine learning grew from these. It provides descriptions of all major areas in machine learning. The book reviews commercially available packages for machine learning and shows how they fit into the field. The book then shows how MATLAB can be used to solve machine learning problems and how MATLAB graphics can enhance the programmer’s understanding of the results and help users of their software grasp the results. Machine Learning can be very mathematical. The mathematics for each area is introduced in a clear and concise form so that even casual readers can understand the math. Readers from all areas of engineering will see connections to what they know and will learn new technology. The book then provides complete solutions in MATLAB for several important problems in machine learning including face identification, autonomous driving, and data classification. Full source code is provided for all of the examples and applications in the book. What you'll learn: An overview of the field of machine learning Commercial and open source packages in MATLAB How to use MATLAB for programming and building machine learning applications MATLAB graphics for machine learning Practical real world examples in MATLAB for major applications of machine learning in big data Who is this book for: The primary audiences are engineers and engineering students wanting a comprehensive and practical introduction to machine learning.

Book Modern Fortran

    Book Details:
  • Author : Milan Curcic
  • Publisher : Simon and Schuster
  • Release : 2020-10-07
  • ISBN : 1638350051
  • Pages : 414 pages

Download or read book Modern Fortran written by Milan Curcic and published by Simon and Schuster. This book was released on 2020-10-07 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern Fortran teaches you to develop fast, efficient parallel applications using twenty-first-century Fortran. In this guide, you’ll dive into Fortran by creating fun apps, including a tsunami simulator and a stock price analyzer. Filled with real-world use cases, insightful illustrations, and hands-on exercises, Modern Fortran helps you see this classic language in a whole new light. Summary Using Fortran, early and accurate forecasts for hurricanes and other major storms have saved thousands of lives. Better designs for ships, planes, and automobiles have made travel safer, more efficient, and less expensive than ever before. Using Fortran, low-level machine learning and deep learning libraries provide incredibly easy, fast, and insightful analysis of massive data. Fortran is an amazingly powerful and flexible programming language that forms the foundation of high performance computing for research, science, and industry. And it's come a long, long way since starting life on IBM mainframes in 1956. Modern Fortran is natively parallel, so it's uniquely suited for efficiently handling problems like complex simulations, long-range predictions, and ultra-precise designs. If you're working on tasks where speed, accuracy, and efficiency matter, it's time to discover—or re-discover—Fortran.. About the technology For over 60 years Fortran has been powering mission-critical scientific applications, and it isn't slowing down yet! Rock-solid reliability and new support for parallel programming make Fortran an essential language for next-generation high-performance computing. Simply put, the future is in parallel, and Fortran is already there. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the book Modern Fortran teaches you to develop fast, efficient parallel applications using twenty-first-century Fortran. In this guide, you'll dive into Fortran by creating fun apps, including a tsunami simulator and a stock price analyzer. Filled with real-world use cases, insightful illustrations, and hands-on exercises, Modern Fortran helps you see this classic language in a whole new light. What's inside Fortran's place in the modern world Working with variables, arrays, and functions Module development Parallelism with coarrays, teams, and events Interoperating Fortran with C About the reader For developers and computational scientists. No experience with Fortran required. About the author Milan Curcic is a meteorologist, oceanographer, and author of several general-purpose Fortran libraries and applications. Table of Contents PART 1 - GETTING STARTED WITH MODERN FORTRAN 1 Introducing Fortran 2 Getting started: Minimal working app PART 2 - CORE ELEMENTS OF FORTRAN 3 Writing reusable code with functions and subroutines 4 Organizing your Fortran code using modules 5 Analyzing time series data with arrays 6 Reading, writing, and formatting your data PART 3 - ADVANCED FORTRAN USE 7 Going parallel with Fortan coarrays 8 Working with abstract data using derived types 9 Generic procedures and operators for any data type 10 User-defined operators for derived types PART 4 - THE FINAL STRETCH 11 Interoperability with C: Exposing your app to the web 12 Advanced parallelism with teams, events, and collectives

Book Machine Learning with Neural Networks Using MATLAB

Download or read book Machine Learning with Neural Networks Using MATLAB written by J. Smith and published by Createspace Independent Publishing Platform. This book was released on 2017-02-27 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning is a method used to devise complex models and algorithms that lend themselves to prediction; in commercial use, this is known as predictive analytics. These analytical models allow researchers, data scientists, engineers, and analysts to produce reliable, repeatable decisions and results" and uncover "hidden insights" through learning from historical relationships and trends in the data. MATLAB has the tool Neural Network Toolbox that provides algorithms, functions, and apps to create, train, visualize, and simulate neural networks. You can perform classification, regression, clustering, dimensionality reduction, time-series forecasting, dynamic system modeling and control and most machine learning techniques. The toolbox includes convolutional neural network and autoencoder deep learning algorithms for image classification and feature learning tasks. To speed up training of large data sets, you can distribute computations and data across multicore processors, GPUs, and computer clusters using Parallel Computing Toolbox. The more important features are the following: -Deep learning, including convolutional neural networks and autoencoders -Parallel computing and GPU support for accelerating training (with Parallel Computing Toolbox) -Supervised learning algorithms, including multilayer, radial basis, learning vector quantization (LVQ), time-delay, nonlinear autoregressive (NARX), and recurrent neural network (RNN) -Unsupervised learning algorithms, including self-organizing maps and competitive layers -Apps for data-fitting, pattern recognition, and clustering -Preprocessing, postprocessing, and network visualization for improving training efficiency and assessing network performance -Simulink(R) blocks for building and evaluating neural networks and for control systems applications

Book Advanced Algorithms for Neural Networks

Download or read book Advanced Algorithms for Neural Networks written by Timothy Masters and published by . This book was released on 1995-04-17 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is one of the first books to offer practical in-depth coverage of the Probabilistic Neural Network (PNN) and several other neural nets and their related algorithms critical to solving some of today's toughest real-world computing problems. Includes complete C++ source code for basic and advanced applications.

Book MATLAB Machine Learning Recipes

Download or read book MATLAB Machine Learning Recipes written by Michael Paluszek and published by Apress. This book was released on 2019-01-31 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: Harness the power of MATLAB to resolve a wide range of machine learning challenges. This book provides a series of examples of technologies critical to machine learning. Each example solves a real-world problem. All code in MATLAB Machine Learning Recipes: A Problem-Solution Approach is executable. The toolbox that the code uses provides a complete set of functions needed to implement all aspects of machine learning. Authors Michael Paluszek and Stephanie Thomas show how all of these technologies allow the reader to build sophisticated applications to solve problems with pattern recognition, autonomous driving, expert systems, and much more. What you'll learn:How to write code for machine learning, adaptive control and estimation using MATLAB How these three areas complement each other How these three areas are needed for robust machine learning applications How to use MATLAB graphics and visualization tools for machine learning How to code real world examples in MATLAB for major applications of machine learning in big data Who is this book for: The primary audiences are engineers, data scientists and students wanting a comprehensive and code cookbook rich in examples on machine learning using MATLAB.

Book Machine Learning for Computer Vision

Download or read book Machine Learning for Computer Vision written by Roberto Cipolla and published by Springer. This book was released on 2012-07-27 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer vision is the science and technology of making machines that see. It is concerned with the theory, design and implementation of algorithms that can automatically process visual data to recognize objects, track and recover their shape and spatial layout. The International Computer Vision Summer School - ICVSS was established in 2007 to provide both an objective and clear overview and an in-depth analysis of the state-of-the-art research in Computer Vision. The courses are delivered by world renowned experts in the field, from both academia and industry, and cover both theoretical and practical aspects of real Computer Vision problems. The school is organized every year by University of Cambridge (Computer Vision and Robotics Group) and University of Catania (Image Processing Lab). Different topics are covered each year. A summary of the past Computer Vision Summer Schools can be found at: http://www.dmi.unict.it/icvss This edited volume contains a selection of articles covering some of the talks and tutorials held during the last editions of the school. The chapters provide an in-depth overview of challenging areas with key references to the existing literature.

Book Practical MATLAB Deep Learning

Download or read book Practical MATLAB Deep Learning written by Michael Paluszek and published by Apress. This book was released on 2020-02-07 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Harness the power of MATLAB for deep-learning challenges. This book provides an introduction to deep learning and using MATLAB's deep-learning toolboxes. You’ll see how these toolboxes provide the complete set of functions needed to implement all aspects of deep learning. Along the way, you'll learn to model complex systems, including the stock market, natural language, and angles-only orbit determination. You’ll cover dynamics and control, and integrate deep-learning algorithms and approaches using MATLAB. You'll also apply deep learning to aircraft navigation using images. Finally, you'll carry out classification of ballet pirouettes using an inertial measurement unit to experiment with MATLAB's hardware capabilities. What You Will LearnExplore deep learning using MATLAB and compare it to algorithmsWrite a deep learning function in MATLAB and train it with examplesUse MATLAB toolboxes related to deep learningImplement tokamak disruption predictionWho This Book Is For Engineers, data scientists, and students wanting a book rich in examples on deep learning using MATLAB.

Book Gmdh methodology And Implementation In Matlab

Download or read book Gmdh methodology And Implementation In Matlab written by Godfrey C Onwubolu and published by World Scientific. This book was released on 2016-06-14 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: Group method of data handling (GMDH) is a typical inductive modeling method built on the principles of self-organization. Since its introduction, inductive modelling has been developed to support complex systems in prediction, clusterization, system identification, as well as data mining and knowledge extraction technologies in social science, science, engineering, and medicine.This is the first book to explore GMDH using MATLAB (matrix laboratory) language. Readers will learn how to implement GMDH in MATLAB as a method of dealing with big data analytics. Error-free source codes in MATLAB have been included in supplementary material (accessible online) to assist users in their understanding in GMDH and to make it easy for users to further develop variations of GMDH algorithms.

Book Neural Networks and Statistical Learning

Download or read book Neural Networks and Statistical Learning written by Ke-Lin Du and published by Springer Science & Business Media. This book was released on 2013-12-09 with total page 834 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardware implementations, and some machine learning topics. Applications to biometric/bioinformatics and data mining are also included. Focusing on the prominent accomplishments and their practical aspects, academic and technical staff, graduate students and researchers will find that this provides a solid foundation and encompassing reference for the fields of neural networks, pattern recognition, signal processing, machine learning, computational intelligence, and data mining.

Book Neural Network Design

Download or read book Neural Network Design written by Martin T. Hagan and published by . This book was released on 2003 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: