Download or read book Neural Network Design written by Martin T. Hagan and published by . This book was released on 2003 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Neural Network Design and the Complexity of Learning written by J. Stephen Judd and published by MIT Press. This book was released on 1990 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Using the tools of complexity theory, Stephen Judd develops a formal description of associative learning in connectionist networks. He rigorously exposes the computational difficulties in training neural networks and explores how certain design principles will or will not make the problems easier.Judd looks beyond the scope of any one particular learning rule, at a level above the details of neurons. There he finds new issues that arise when great numbers of neurons are employed and he offers fresh insights into design principles that could guide the construction of artificial and biological neural networks.The first part of the book describes the motivations and goals of the study and relates them to current scientific theory. It provides an overview of the major ideas, formulates the general learning problem with an eye to the computational complexity of the task, reviews current theory on learning, relates the book's model of learning to other models outside the connectionist paradigm, and sets out to examine scale-up issues in connectionist learning.Later chapters prove the intractability of the general case of memorizing in networks, elaborate on implications of this intractability and point out several corollaries applying to various special subcases. Judd refines the distinctive characteristics of the difficulties with families of shallow networks, addresses concerns about the ability of neural networks to generalize, and summarizes the results, implications, and possible extensions of the work. Neural Network Design and the Complexity of Learning is included in the Network Modeling and Connectionism series edited by Jeffrey Elman.
Download or read book Deep Neural Network Design for Radar Applications written by Sevgi Zubeyde Gurbuz and published by SciTech Publishing. This book was released on 2020-12-31 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: Novel deep learning approaches are achieving state-of-the-art accuracy in the area of radar target recognition, enabling applications beyond the scope of human-level performance. This book provides an introduction to the unique aspects of machine learning for radar signal processing that any scientist or engineer seeking to apply these technologies ought to be aware of.
Download or read book Deep Learning Neural Networks Design And Case Studies written by Daniel Graupe and published by World Scientific Publishing Company. This book was released on 2016-07-07 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep Learning Neural Networks is the fastest growing field in machine learning. It serves as a powerful computational tool for solving prediction, decision, diagnosis, detection and decision problems based on a well-defined computational architecture. It has been successfully applied to a broad field of applications ranging from computer security, speech recognition, image and video recognition to industrial fault detection, medical diagnostics and finance.This comprehensive textbook is the first in the new emerging field. Numerous case studies are succinctly demonstrated in the text. It is intended for use as a one-semester graduate-level university text and as a textbook for research and development establishments in industry, medicine and financial research.
Download or read book Recurrent Neural Networks written by Larry Medsker and published by CRC Press. This book was released on 1999-12-20 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: With existent uses ranging from motion detection to music synthesis to financial forecasting, recurrent neural networks have generated widespread attention. The tremendous interest in these networks drives Recurrent Neural Networks: Design and Applications, a summary of the design, applications, current research, and challenges of this subfield of artificial neural networks. This overview incorporates every aspect of recurrent neural networks. It outlines the wide variety of complex learning techniques and associated research projects. Each chapter addresses architectures, from fully connected to partially connected, including recurrent multilayer feedforward. It presents problems involving trajectories, control systems, and robotics, as well as RNN use in chaotic systems. The authors also share their expert knowledge of ideas for alternate designs and advances in theoretical aspects. The dynamical behavior of recurrent neural networks is useful for solving problems in science, engineering, and business. This approach will yield huge advances in the coming years. Recurrent Neural Networks illuminates the opportunities and provides you with a broad view of the current events in this rich field.
Download or read book Mathematical Methods for Neural Network Analysis and Design written by Richard M. Golden and published by MIT Press. This book was released on 1996 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: For convenience, many of the proofs of the key theorems have been rewritten so that the entire book uses a relatively uniform notion.
Download or read book Neural Networks for RF and Microwave Design written by Q. J. Zhang and published by Artech House Publishers. This book was released on 2000 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover the new, unconventional alternatives for conquering RF and microwave design and modeling problems using neural networks -- information processing systems that can learn, generalize, and even allow model development when component formulas are missing -- with this book and software package. It shows you the ease of creating models with neural networks, and how quick model evaluation can be done, plus other opportunities presented by neural networks for conquering the toughest RF and microwave CAD problems.
Download or read book Neural Networks In Design And Manufacturing written by Yoshiyasu Takefuji and published by World Scientific. This book was released on 1993-10-29 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past few years, there has been a surge of research activities on artificial neural networks. Although the thrust originally came from computer scientists and electrical engineers, neural network research has recently attracted researchers in the fields of operations research, operations management and industrial engineering.Despite the huge volume of recent publications devoted to neural network research, there is no single monograph addressing the potential roles of artificial neural networks for design and manufacturing.The focus of this book is on the applications of neural network concepts and techniques to design and manufacturing. This book reviews the state-of-the-art of the research activities, highlights the recent advances in research and development, and discusses the potential directions and future trends along this stream of research.The potential readers of this book will include, but are not limited to, beginners, professionals and practitioners in industries who are applying neural networks to design and manufacturing.The topics include conceptual design, group technology, process planning and scheduling, process monitoring and others.
Download or read book Neural Networks and Systolic Array Design written by Sankar K. Pal and published by World Scientific. This book was released on 2002 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural networks (NNs) and systolic arrays (SAs) have many similar features. This volume describes, in a unified way, the basic concepts, theories and characteristic features of integrating or formulating different facets of NNs and SAs, as well as presents recent developments and significant applications. The articles, written by experts from all over the world, demonstrate the various ways this integration can be made to efficiently design methodologies, algorithms and architectures, and also implementations, for NN applications. The book will be useful to graduate students and researchers in many related areas, not only as a reference book but also as a textbook for some parts of the curriculum. It will also benefit researchers and practitioners in industry and R&D laboratories who are working in the fields of system design, VLSI, parallel processing, neural networks, and vision.
Download or read book Neural Networks and Deep Learning written by Charu C. Aggarwal and published by Springer. This book was released on 2018-08-25 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories: The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec. Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines. Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10. The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.
Download or read book Neural Networks written by Raul Rojas and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural networks are a computing paradigm that is finding increasing attention among computer scientists. In this book, theoretical laws and models previously scattered in the literature are brought together into a general theory of artificial neural nets. Always with a view to biology and starting with the simplest nets, it is shown how the properties of models change when more general computing elements and net topologies are introduced. Each chapter contains examples, numerous illustrations, and a bibliography. The book is aimed at readers who seek an overview of the field or who wish to deepen their knowledge. It is suitable as a basis for university courses in neurocomputing.
Download or read book Neural Networks in QSAR and Drug Design written by James Devillers and published by Academic Press. This book was released on 1996-08-09 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive and impeccably edited, Neural Networks in QSAR and Drug Design is the first book to present an all-inclusive coverage of the topic. The book provides a practice-oriented introduction to the different neural network paradigms, allowing the reader to easily understand and reproduce the results demonstrated. Numerous examples are detailed, demonstrating a variety of applications to QSAR and drug design.The contributors include some of the most distinguished names in the field, and the book provides an exhaustive bibliography, guiding readers to all the literature related to a particular type of application or neural network paradigm. The extensive index acts as a guide to the book, and makes retrieving information from chapters an easy task. A further research aid is a list of software with indications of availablility and price, as well as the editors scale rating the ease of use and interest/price ratio of each software package. The presentation of new, powerful tools for modeling molecular properties and the inclusion of many important neural network paradigms, coupled with extensive reference aids, makes Neural Networks in QSAR and Drug Design an essential reference source for those on the frontiers of this field. - Presents the first coverage of neural networks in QSAR and Drug Design - Allows easy understanding and reproduction of the results described within - Includes an exhaustive bibliography with more than 200 references - Provides a list of applicable software packages with availability and price
Download or read book Efficient Processing of Deep Neural Networks written by Vivienne Sze and published by Springer Nature. This book was released on 2022-05-31 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.
Download or read book Artificial Neural Network for Drug Design Delivery and Disposition written by Munish Puri and published by Academic Press. This book was released on 2015-10-15 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Neural Network for Drug Design, Delivery and Disposition provides an in-depth look at the use of artificial neural networks (ANN) in pharmaceutical research. With its ability to learn and self-correct in a highly complex environment, this predictive tool has tremendous potential to help researchers more effectively design, develop, and deliver successful drugs. This book illustrates how to use ANN methodologies and models with the intent to treat diseases like breast cancer, cardiac disease, and more. It contains the latest cutting-edge research, an analysis of the benefits of ANN, and relevant industry examples. As such, this book is an essential resource for academic and industry researchers across the pharmaceutical and biomedical sciences. - Written by leading academic and industry scientists who have contributed significantly to the field and are at the forefront of artificial neural network (ANN) research - Focuses on ANN in drug design, discovery and delivery, as well as adopted methodologies and their applications to the treatment of various diseases and disorders - Chapters cover important topics across the pharmaceutical process, such as ANN in structure-based drug design and the application of ANN in modern drug discovery - Presents the future potential of ANN-based strategies in biomedical image analysis and much more
Download or read book Radial Basis Function RBF Neural Network Control for Mechanical Systems written by Jinkun Liu and published by Springer Science & Business Media. This book was released on 2013-01-26 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: Radial Basis Function (RBF) Neural Network Control for Mechanical Systems is motivated by the need for systematic design approaches to stable adaptive control system design using neural network approximation-based techniques. The main objectives of the book are to introduce the concrete design methods and MATLAB simulation of stable adaptive RBF neural control strategies. In this book, a broad range of implementable neural network control design methods for mechanical systems are presented, such as robot manipulators, inverted pendulums, single link flexible joint robots, motors, etc. Advanced neural network controller design methods and their stability analysis are explored. The book provides readers with the fundamentals of neural network control system design. This book is intended for the researchers in the fields of neural adaptive control, mechanical systems, Matlab simulation, engineering design, robotics and automation. Jinkun Liu is a professor at Beijing University of Aeronautics and Astronautics.
Download or read book An Introduction to Neural Networks written by Kevin Gurney and published by CRC Press. This book was released on 2018-10-08 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: Though mathematical ideas underpin the study of neural networks, the author presents the fundamentals without the full mathematical apparatus. All aspects of the field are tackled, including artificial neurons as models of their real counterparts; the geometry of network action in pattern space; gradient descent methods, including back-propagation; associative memory and Hopfield nets; and self-organization and feature maps. The traditionally difficult topic of adaptive resonance theory is clarified within a hierarchical description of its operation. The book also includes several real-world examples to provide a concrete focus. This should enhance its appeal to those involved in the design, construction and management of networks in commercial environments and who wish to improve their understanding of network simulator packages. As a comprehensive and highly accessible introduction to one of the most important topics in cognitive and computer science, this volume should interest a wide range of readers, both students and professionals, in cognitive science, psychology, computer science and electrical engineering.
Download or read book Principles of Neural Design written by Peter Sterling and published by MIT Press. This book was released on 2015-05-22 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neuroscience research has exploded, with more than fifty thousand neuroscientists applying increasingly advanced methods. A mountain of new facts and mechanisms has emerged. And yet a principled framework to organize this knowledge has been missing. In this book, Peter Sterling and Simon Laughlin, two leading neuroscientists, strive to fill this gap, outlining a set of organizing principles to explain the whys of neural design that allow the brain to compute so efficiently. Setting out to "reverse engineer" the brain -- disassembling it to understand it -- Sterling and Laughlin first consider why an animal should need a brain, tracing computational abilities from bacterium to protozoan to worm. They examine bigger brains and the advantages of "anticipatory regulation"; identify constraints on neural design and the need to "nanofy"; and demonstrate the routes to efficiency in an integrated molecular system, phototransduction. They show that the principles of neural design at finer scales and lower levels apply at larger scales and higher levels; describe neural wiring efficiency; and discuss learning as a principle of biological design that includes "save only what is needed." Sterling and Laughlin avoid speculation about how the brain might work and endeavor to make sense of what is already known. Their distinctive contribution is to gather a coherent set of basic rules and exemplify them across spatial and functional scales.