EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Neural Modeling of Speech Processing and Speech Learning

Download or read book Neural Modeling of Speech Processing and Speech Learning written by Bernd J. Kröger and published by Springer. This book was released on 2019-07-11 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the processes of spoken language production and perception from a neurobiological perspective. After presenting the basics of speech processing and speech acquisition, a neurobiologically-inspired and computer-implemented neural model is described, which simulates the neural processes of speech processing and speech acquisition. This book is an introduction to the field and aimed at students and scientists in neuroscience, computer science, medicine, psychology and linguistics.

Book Neural Networks and Speech Processing

Download or read book Neural Networks and Speech Processing written by David P. Morgan and published by Springer. This book was released on 1991-02-28 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: We would like to take this opportunity to thank all of those individ uals who helped us assemble this text, including the people of Lockheed Sanders and Nestor, Inc., whose encouragement and support were greatly appreciated. In addition, we would like to thank the members of the Lab oratory for Engineering Man-Machine Systems (LEMS) and the Center for Neural Science at Brown University for their frequent and helpful discussions on a number of topics discussed in this text. Although we both attended Brown from 1983 to 1985, and had offices in the same building, it is surprising that we did not meet until 1988. We also wish to thank Kluwer Academic Publishers for their profes sionalism and patience, and the reviewers for their constructive criticism. Thanks to John McCarthy for performing the final proof, and to John Adcock, Chip Bachmann, Deborah Farrow, Nathan Intrator, Michael Perrone, Ed Real, Lance Riek and Paul Zemany for their comments and assistance. We would also like to thank Khrisna Nathan, our most unbi ased and critical reviewer, for his suggestions for improving the content and accuracy of this text. A special thanks goes to Steve Hoffman, who was instrumental in helping us perform the experiments described in Chapter 9.

Book Intelligent Speech Signal Processing

Download or read book Intelligent Speech Signal Processing written by Nilanjan Dey and published by Academic Press. This book was released on 2019-04-02 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intelligent Speech Signal Processing investigates the utilization of speech analytics across several systems and real-world activities, including sharing data analytics, creating collaboration networks between several participants, and implementing video-conferencing in different application areas. Chapters focus on the latest applications of speech data analysis and management tools across different recording systems. The book emphasizes the multidisciplinary nature of the field, presenting different applications and challenges with extensive studies on the design, development and management of intelligent systems, neural networks and related machine learning techniques for speech signal processing.

Book Automatic Speech Recognition

Download or read book Automatic Speech Recognition written by Dong Yu and published by Springer. This book was released on 2014-11-11 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive overview of the recent advancement in the field of automatic speech recognition with a focus on deep learning models including deep neural networks and many of their variants. This is the first automatic speech recognition book dedicated to the deep learning approach. In addition to the rigorous mathematical treatment of the subject, the book also presents insights and theoretical foundation of a series of highly successful deep learning models.

Book Speech Processing  Recognition and Artificial Neural Networks

Download or read book Speech Processing Recognition and Artificial Neural Networks written by Gerard Chollet and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Speech Processing, Recognition and Artificial Neural Networks contains papers from leading researchers and selected students, discussing the experiments, theories and perspectives of acoustic phonetics as well as the latest techniques in the field of spe ech science and technology. Topics covered in this book include; Fundamentals of Speech Analysis and Perceptron; Speech Processing; Stochastic Models for Speech; Auditory and Neural Network Models for Speech; Task-Oriented Applications of Automatic Speech Recognition and Synthesis.

Book Deep Learning for NLP and Speech Recognition

Download or read book Deep Learning for NLP and Speech Recognition written by Uday Kamath and published by Springer. This book was released on 2019-06-10 with total page 640 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook explains Deep Learning Architecture, with applications to various NLP Tasks, including Document Classification, Machine Translation, Language Modeling, and Speech Recognition. With the widespread adoption of deep learning, natural language processing (NLP),and speech applications in many areas (including Finance, Healthcare, and Government) there is a growing need for one comprehensive resource that maps deep learning techniques to NLP and speech and provides insights into using the tools and libraries for real-world applications. Deep Learning for NLP and Speech Recognition explains recent deep learning methods applicable to NLP and speech, provides state-of-the-art approaches, and offers real-world case studies with code to provide hands-on experience. Many books focus on deep learning theory or deep learning for NLP-specific tasks while others are cookbooks for tools and libraries, but the constant flux of new algorithms, tools, frameworks, and libraries in a rapidly evolving landscape means that there are few available texts that offer the material in this book. The book is organized into three parts, aligning to different groups of readers and their expertise. The three parts are: Machine Learning, NLP, and Speech Introduction The first part has three chapters that introduce readers to the fields of NLP, speech recognition, deep learning and machine learning with basic theory and hands-on case studies using Python-based tools and libraries. Deep Learning Basics The five chapters in the second part introduce deep learning and various topics that are crucial for speech and text processing, including word embeddings, convolutional neural networks, recurrent neural networks and speech recognition basics. Theory, practical tips, state-of-the-art methods, experimentations and analysis in using the methods discussed in theory on real-world tasks. Advanced Deep Learning Techniques for Text and Speech The third part has five chapters that discuss the latest and cutting-edge research in the areas of deep learning that intersect with NLP and speech. Topics including attention mechanisms, memory augmented networks, transfer learning, multi-task learning, domain adaptation, reinforcement learning, and end-to-end deep learning for speech recognition are covered using case studies.

Book Speech   Language Processing

    Book Details:
  • Author : Dan Jurafsky
  • Publisher : Pearson Education India
  • Release : 2000-09
  • ISBN : 9788131716724
  • Pages : 912 pages

Download or read book Speech Language Processing written by Dan Jurafsky and published by Pearson Education India. This book was released on 2000-09 with total page 912 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computational Models of Speech Pattern Processing

Download or read book Computational Models of Speech Pattern Processing written by Keith Ponting and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the NATO Advanced Study Institute on Computational Models of Speech Pattern Processing, held in St. Helier, Jersey, UK, July 7-18, 1997

Book Neural Control of Speech

Download or read book Neural Control of Speech written by Frank H. Guenther and published by MIT Press. This book was released on 2016-07-15 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and unified account of the neural computations underlying speech production, offering a theoretical framework bridging the behavioral and the neurological literatures. In this book, Frank Guenther offers a comprehensive, unified account of the neural computations underlying speech production, with an emphasis on speech motor control rather than linguistic content. Guenther focuses on the brain mechanisms responsible for commanding the musculature of the vocal tract to produce articulations that result in an acoustic signal conveying a desired string of syllables. Guenther provides neuroanatomical and neurophysiological descriptions of the primary brain structures involved in speech production, looking particularly at the cerebral cortex and its interactions with the cerebellum and basal ganglia, using basic concepts of control theory (accompanied by nontechnical explanations) to explore the computations performed by these brain regions. Guenther offers a detailed theoretical framework to account for a broad range of both behavioral and neurological data on the production of speech. He discusses such topics as the goals of the neural controller of speech; neural mechanisms involved in producing both short and long utterances; and disorders of the speech system, including apraxia of speech and stuttering. Offering a bridge between the neurological and behavioral literatures on speech production, the book will be a valuable resource for researchers in both fields.

Book Neural Network Methods for Natural Language Processing

Download or read book Neural Network Methods for Natural Language Processing written by Yoav Goldberg and published by Springer Nature. This book was released on 2022-06-01 with total page 20 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural networks are a family of powerful machine learning models. This book focuses on the application of neural network models to natural language data. The first half of the book (Parts I and II) covers the basics of supervised machine learning and feed-forward neural networks, the basics of working with machine learning over language data, and the use of vector-based rather than symbolic representations for words. It also covers the computation-graph abstraction, which allows to easily define and train arbitrary neural networks, and is the basis behind the design of contemporary neural network software libraries. The second part of the book (Parts III and IV) introduces more specialized neural network architectures, including 1D convolutional neural networks, recurrent neural networks, conditioned-generation models, and attention-based models. These architectures and techniques are the driving force behind state-of-the-art algorithms for machine translation, syntactic parsing, and many other applications. Finally, we also discuss tree-shaped networks, structured prediction, and the prospects of multi-task learning.

Book Second Language Speech Learning

Download or read book Second Language Speech Learning written by Ratree Wayland and published by Cambridge University Press. This book was released on 2021-02-04 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: Including contributions from a team of world-renowned international scholars, this volume is a state-of-the-art survey of second language speech research, showcasing new empirical studies alongside critical reviews of existing influential speech learning models. It presents a revised version of Flege's Speech Learning Model (SLM-r) for the first time, an update on a cornerstone of second language research. Chapters are grouped into five thematic areas: theoretical progress, segmental acquisition, acquiring suprasegmental features, accentedness and acoustic features, and cognitive and psychological variables. Every chapter provides new empirical evidence, offering new insights as well as challenges on aspects of the second language speech acquisition process. Comprehensive in its coverage, this book summarises the state of current research in second language phonology, and aims to shape and inspire future research in the field. It is an essential resource for academic researchers and students of second language acquisition, applied linguistics and phonetics and phonology.

Book Robust Automatic Speech Recognition

Download or read book Robust Automatic Speech Recognition written by Jinyu Li and published by Academic Press. This book was released on 2015-10-30 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Robust Automatic Speech Recognition: A Bridge to Practical Applications establishes a solid foundation for automatic speech recognition that is robust against acoustic environmental distortion. It provides a thorough overview of classical and modern noise-and reverberation robust techniques that have been developed over the past thirty years, with an emphasis on practical methods that have been proven to be successful and which are likely to be further developed for future applications.The strengths and weaknesses of robustness-enhancing speech recognition techniques are carefully analyzed. The book covers noise-robust techniques designed for acoustic models which are based on both Gaussian mixture models and deep neural networks. In addition, a guide to selecting the best methods for practical applications is provided.The reader will: - Gain a unified, deep and systematic understanding of the state-of-the-art technologies for robust speech recognition - Learn the links and relationship between alternative technologies for robust speech recognition - Be able to use the technology analysis and categorization detailed in the book to guide future technology development - Be able to develop new noise-robust methods in the current era of deep learning for acoustic modeling in speech recognition - The first book that provides a comprehensive review on noise and reverberation robust speech recognition methods in the era of deep neural networks - Connects robust speech recognition techniques to machine learning paradigms with rigorous mathematical treatment - Provides elegant and structural ways to categorize and analyze noise-robust speech recognition techniques - Written by leading researchers who have been actively working on the subject matter in both industrial and academic organizations for many years

Book New Era for Robust Speech Recognition

Download or read book New Era for Robust Speech Recognition written by Shinji Watanabe and published by Springer. This book was released on 2017-10-30 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the state-of-the-art in deep neural-network-based methods for noise robustness in distant speech recognition applications. It provides insights and detailed descriptions of some of the new concepts and key technologies in the field, including novel architectures for speech enhancement, microphone arrays, robust features, acoustic model adaptation, training data augmentation, and training criteria. The contributed chapters also include descriptions of real-world applications, benchmark tools and datasets widely used in the field. This book is intended for researchers and practitioners working in the field of speech processing and recognition who are interested in the latest deep learning techniques for noise robustness. It will also be of interest to graduate students in electrical engineering or computer science, who will find it a useful guide to this field of research.

Book Statistical Language and Speech Processing

Download or read book Statistical Language and Speech Processing written by Carlos Martín-Vide and published by Springer Nature. This book was released on 2019-09-27 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the 7th International Conference on Statistical Language and Speech Processing, SLSP 2019, held in Ljubljana, Slovenia, in October 2019. The 25 full papers presented together with one invited paper in this volume were carefully reviewed and selected from 48 submissions. They were organized in topical sections named: Dialogue and Spoken Language Understanding; Language Analysis and Generation; Speech Analysis and Synthesis; Speech Recognition; Text Analysis and Classification.

Book Speech Enhancement

    Book Details:
  • Author : Shoji Makino
  • Publisher : Springer Science & Business Media
  • Release : 2005
  • ISBN : 9783540240396
  • Pages : 432 pages

Download or read book Speech Enhancement written by Shoji Makino and published by Springer Science & Business Media. This book was released on 2005 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: We live in a noisy world! In all applications (telecommunications, hands-free communications, recording, human-machine interfaces, etc.) that require at least one microphone, the signal of interest is usually contaminated by noise and reverberation. As a result, the microphone signal has to be "cleaned" with digital signal processing tools before it is played out, transmitted, or stored. This book is about speech enhancement. Different well-known and state-of-the-art methods for noise reduction, with one or multiple microphones, are discussed. By speech enhancement, we mean not only noise reduction but also dereverberation and separation of independent signals. These topics are also covered in this book. However, the general emphasis is on noise reduction because of the large number of applications that can benefit from this technology. The goal of this book is to provide a strong reference for researchers, engineers, and graduate students who are interested in the problem of signal and speech enhancement. To do so, we invited well-known experts to contribute chapters covering the state of the art in this focused field. TOC:Introduction.- Study of the Wiener Filter for Noise Reduction.- Statistical Methods for the Enhancement of Noisy Speech.- Single- und Multi-Microphone Spectral Amplitude Estimation Using a Super-Gaussian Speech Model.- From Volatility Modeling of Financial Time-Series to Stochastic Modeling and Enhancement of Speech Signals.- Single-Microphone Noise Suppression for 3G Handsets Based on Weighted Noise Estimation.- Signal Subspace Techniques for Speech Enhancement.- Speech Enhancement: Application of the Kalman Filter in the Estimate-Maximize (EM) Framework.- Speech Distortion Weighted Multichannel Wiener Filtering Techniques for Noise Reduction.- Adpative Microphone Arrays Employing Spatial Quadratic Soft Constraints and Spectral Shaping.- Single-Microphone Blind Dereverberation.- Separation and Dereverberation of Speech Signals with Multiple Microphones.- Frequency-Domain Blind Source Separation.- Subband Based Blind Source Separation.- Real-Time Blind Source Separation for Moving Speech Signals.- Separation of Speech by Computational Auditory Scene Analysis

Book Neural Models of Language Processes

Download or read book Neural Models of Language Processes written by Michael A. Arbib and published by . This book was released on 1982 with total page 598 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural Models of Language Processes offers an interdisciplinary approach to understanding the nature of human language and the means whereby we use it. The book is organized into five parts. Part I provides an opening framework that addresses three tasks: to place neurolinguistics in current perspective; to provide two case studies of aphasia; and to discuss the """"rules of the game"""" of the various disciplines that contribute to this volume. Part II on artificial intelligence (AI) and processing models discusses the contribution of AI to neurolinguistics. The chapters in this section intro ...

Book Neural Networks for Natural Language Processing

Download or read book Neural Networks for Natural Language Processing written by S., Sumathi and published by IGI Global. This book was released on 2019-11-29 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: Information in today’s advancing world is rapidly expanding and becoming widely available. This eruption of data has made handling it a daunting and time-consuming task. Natural language processing (NLP) is a method that applies linguistics and algorithms to large amounts of this data to make it more valuable. NLP improves the interaction between humans and computers, yet there remains a lack of research that focuses on the practical implementations of this trending approach. Neural Networks for Natural Language Processing is a collection of innovative research on the methods and applications of linguistic information processing and its computational properties. This publication will support readers with performing sentence classification and language generation using neural networks, apply deep learning models to solve machine translation and conversation problems, and apply deep structured semantic models on information retrieval and natural language applications. While highlighting topics including deep learning, query entity recognition, and information retrieval, this book is ideally designed for research and development professionals, IT specialists, industrialists, technology developers, data analysts, data scientists, academics, researchers, and students seeking current research on the fundamental concepts and techniques of natural language processing.