EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Neural Codes and Distributed Representations

Download or read book Neural Codes and Distributed Representations written by L. F. Abbott and published by MIT Press. This book was released on 1999 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since its founding in 1989 by Terrence Sejnowski, Neural Computation has become the leading journal in the field. Foundations of Neural Computation collects, by topic, the most significant papers that have appeared in the journal over the past nine years. The present volume focuses on neural codes and representations, topics of broad interest to neuroscientists and modelers. The topics addressed are: how neurons encode information through action potential firing patterns, how populations of neurons represent information, and how individual neurons use dendritic processing and biophysical properties of synapses to decode spike trains. The papers encompass a wide range of levels of investigation, from dendrites and neurons to networks and systems.

Book Representation in the Brain

    Book Details:
  • Author : Asim Roy
  • Publisher : Frontiers Media SA
  • Release : 2018-09-28
  • ISBN : 2889455963
  • Pages : 147 pages

Download or read book Representation in the Brain written by Asim Roy and published by Frontiers Media SA. This book was released on 2018-09-28 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt: This eBook contains ten articles on the topic of representation of abstract concepts, both simple and complex, at the neural level in the brain. Seven of the articles directly address the main competing theories of mental representation – localist and distributed. Four of these articles argue – either on a theoretical basis or with neurophysiological evidence – that abstract concepts, simple or complex, exist (have to exist) at either the single cell level or in an exclusive neural cell assembly. There are three other papers that argue for sparse distributed representation (population coding) of abstract concepts. There are two other papers that discuss neural implementation of symbolic models. The remaining paper deals with learning of motor skills from imagery versus actual execution. A summary of these papers is provided in the Editorial.

Book Visual Population Codes

Download or read book Visual Population Codes written by Nikolaus Kriegeskorte and published by MIT Press. This book was released on 2012 with total page 659 pages. Available in PDF, EPUB and Kindle. Book excerpt: How visual content is represented in neuronal population codes and how to analyze such codes with multivariate techniques. Vision is a massively parallel computational process, in which the retinal image is transformed over a sequence of stages so as to emphasize behaviorally relevant information (such as object category and identity) and deemphasize other information (such as viewpoint and lighting). The processes behind vision operate by concurrent computation and message passing among neurons within a visual area and between different areas. The theoretical concept of "population code" encapsulates the idea that visual content is represented at each stage by the pattern of activity across the local population of neurons. Understanding visual population codes ultimately requires multichannel measurement and multivariate analysis of activity patterns. Over the past decade, the multivariate approach has gained significant momentum in vision research. Functional imaging and cell recording measure brain activity in fundamentally different ways, but they now use similar theoretical concepts and mathematical tools in their modeling and analyses. With a focus on the ventral processing stream thought to underlie object recognition, this book presents recent advances in our understanding of visual population codes, novel multivariate pattern-information analysis techniques, and the beginnings of a unified perspective for cell recording and functional imaging. It serves as an introduction, overview, and reference for scientists and students across disciplines who are interested in human and primate vision and, more generally, in understanding how the brain represents and processes information.

Book The Handbook of Brain Theory and Neural Networks

Download or read book The Handbook of Brain Theory and Neural Networks written by Michael A. Arbib and published by MIT Press. This book was released on 2003 with total page 1328 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition presents the enormous progress made in recent years in the many subfields related to the two great questions : how does the brain work? and, How can we build intelligent machines? This second edition greatly increases the coverage of models of fundamental neurobiology, cognitive neuroscience, and neural network approaches to language. (Midwest).

Book Principles of Neural Coding

Download or read book Principles of Neural Coding written by Rodrigo Quian Quiroga and published by CRC Press. This book was released on 2013-05-06 with total page 643 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding how populations of neurons encode information is the challenge faced by researchers in the field of neural coding. Focusing on the many mysteries and marvels of the mind has prompted a prominent team of experts in the field to put their heads together and fire up a book on the subject. Simply titled Principles of Neural Coding, this book covers the complexities of this discipline. It centers on some of the major developments in this area and presents a complete assessment of how neurons in the brain encode information. The book collaborators contribute various chapters that describe results in different systems (visual, auditory, somatosensory perception, etc.) and different species (monkeys, rats, humans, etc). Concentrating on the recording and analysis of the firing of single and multiple neurons, and the analysis and recording of other integrative measures of network activity and network states—such as local field potentials or current source densities—is the basis of the introductory chapters. Provides a comprehensive and interdisciplinary approach Describes topics of interest to a wide range of researchers The book then moves forward with the description of the principles of neural coding for different functions and in different species and concludes with theoretical and modeling works describing how information processing functions are implemented. The text not only contains the most important experimental findings, but gives an overview of the main methodological aspects for studying neural coding. In addition, the book describes alternative approaches based on simulations with neural networks and in silico modeling in this highly interdisciplinary topic. It can serve as an important reference to students and professionals.

Book An Introductory Course in Computational Neuroscience

Download or read book An Introductory Course in Computational Neuroscience written by Paul Miller and published by MIT Press. This book was released on 2018-10-02 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook for students with limited background in mathematics and computer coding, emphasizing computer tutorials that guide readers in producing models of neural behavior. This introductory text teaches students to understand, simulate, and analyze the complex behaviors of individual neurons and brain circuits. It is built around computer tutorials that guide students in producing models of neural behavior, with the associated Matlab code freely available online. From these models students learn how individual neurons function and how, when connected, neurons cooperate in a circuit. The book demonstrates through simulated models how oscillations, multistability, post-stimulus rebounds, and chaos can arise within either single neurons or circuits, and it explores their roles in the brain. The book first presents essential background in neuroscience, physics, mathematics, and Matlab, with explanations illustrated by many example problems. Subsequent chapters cover the neuron and spike production; single spike trains and the underlying cognitive processes; conductance-based models; the simulation of synaptic connections; firing-rate models of large-scale circuit operation; dynamical systems and their components; synaptic plasticity; and techniques for analysis of neuron population datasets, including principal components analysis, hidden Markov modeling, and Bayesian decoding. Accessible to undergraduates in life sciences with limited background in mathematics and computer coding, the book can be used in a “flipped” or “inverted” teaching approach, with class time devoted to hands-on work on the computer tutorials. It can also be a resource for graduate students in the life sciences who wish to gain computing skills and a deeper knowledge of neural function and neural circuits.

Book From Neuron to Cognition via Computational Neuroscience

Download or read book From Neuron to Cognition via Computational Neuroscience written by Michael A. Arbib and published by MIT Press. This book was released on 2016-11-04 with total page 810 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive, integrated, and accessible textbook presenting core neuroscientific topics from a computational perspective, tracing a path from cells and circuits to behavior and cognition. This textbook presents a wide range of subjects in neuroscience from a computational perspective. It offers a comprehensive, integrated introduction to core topics, using computational tools to trace a path from neurons and circuits to behavior and cognition. Moreover, the chapters show how computational neuroscience—methods for modeling the causal interactions underlying neural systems—complements empirical research in advancing the understanding of brain and behavior. The chapters—all by leaders in the field, and carefully integrated by the editors—cover such subjects as action and motor control; neuroplasticity, neuromodulation, and reinforcement learning; vision; and language—the core of human cognition. The book can be used for advanced undergraduate or graduate level courses. It presents all necessary background in neuroscience beyond basic facts about neurons and synapses and general ideas about the structure and function of the human brain. Students should be familiar with differential equations and probability theory, and be able to pick up the basics of programming in MATLAB and/or Python. Slides, exercises, and other ancillary materials are freely available online, and many of the models described in the chapters are documented in the brain operation database, BODB (which is also described in a book chapter). Contributors Michael A. Arbib, Joseph Ayers, James Bednar, Andrej Bicanski, James J. Bonaiuto, Nicolas Brunel, Jean-Marie Cabelguen, Carmen Canavier, Angelo Cangelosi, Richard P. Cooper, Carlos R. Cortes, Nathaniel Daw, Paul Dean, Peter Ford Dominey, Pierre Enel, Jean-Marc Fellous, Stefano Fusi, Wulfram Gerstner, Frank Grasso, Jacqueline A. Griego, Ziad M. Hafed, Michael E. Hasselmo, Auke Ijspeert, Stephanie Jones, Daniel Kersten, Jeremie Knuesel, Owen Lewis, William W. Lytton, Tomaso Poggio, John Porrill, Tony J. Prescott, John Rinzel, Edmund Rolls, Jonathan Rubin, Nicolas Schweighofer, Mohamed A. Sherif, Malle A. Tagamets, Paul F. M. J. Verschure, Nathan Vierling-Claasen, Xiao-Jing Wang, Christopher Williams, Ransom Winder, Alan L. Yuille

Book Spikes

Download or read book Spikes written by Fred Rieke and published by MIT Press (MA). This book was released on 1997 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intended for neurobiologists with an interest in mathematical analysis of neural data as well as the growing number of physicists and mathematicians interested in information processing by "real" nervous systems, Spikes provides a self-contained review of relevant concepts in information theory and statistical decision theory.

Book Bayesian Brain

Download or read book Bayesian Brain written by Kenji Doya and published by MIT Press. This book was released on 2007 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: Experimental and theoretical neuroscientists use Bayesian approaches to analyze the brain mechanisms of perception, decision-making, and motor control.

Book Neural Engineering

    Book Details:
  • Author : Chris Eliasmith
  • Publisher : MIT Press
  • Release : 2003
  • ISBN : 9780262550604
  • Pages : 384 pages

Download or read book Neural Engineering written by Chris Eliasmith and published by MIT Press. This book was released on 2003 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: A synthesis of current approaches to adapting engineering tools to the study of neurobiological systems.

Book Catalyzing Inquiry at the Interface of Computing and Biology

Download or read book Catalyzing Inquiry at the Interface of Computing and Biology written by National Research Council and published by National Academies Press. This book was released on 2005-12-01 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in computer science and technology and in biology over the last several years have opened up the possibility for computing to help answer fundamental questions in biology and for biology to help with new approaches to computing. Making the most of the research opportunities at the interface of computing and biology requires the active participation of people from both fields. While past attempts have been made in this direction, circumstances today appear to be much more favorable for progress. To help take advantage of these opportunities, this study was requested of the NRC by the National Science Foundation, the Department of Defense, the National Institutes of Health, and the Department of Energy. The report provides the basis for establishing cross-disciplinary collaboration between biology and computing including an analysis of potential impediments and strategies for overcoming them. The report also presents a wealth of examples that should encourage students in the biological sciences to look for ways to enable them to be more effective users of computing in their studies.

Book Case Studies in Neural Data Analysis

Download or read book Case Studies in Neural Data Analysis written by Mark A. Kramer and published by MIT Press. This book was released on 2016-10-28 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical guide to neural data analysis techniques that presents sample datasets and hands-on methods for analyzing the data. As neural data becomes increasingly complex, neuroscientists now require skills in computer programming, statistics, and data analysis. This book teaches practical neural data analysis techniques by presenting example datasets and developing techniques and tools for analyzing them. Each chapter begins with a specific example of neural data, which motivates mathematical and statistical analysis methods that are then applied to the data. This practical, hands-on approach is unique among data analysis textbooks and guides, and equips the reader with the tools necessary for real-world neural data analysis. The book begins with an introduction to MATLAB, the most common programming platform in neuroscience, which is used in the book. (Readers familiar with MATLAB can skip this chapter and might decide to focus on data type or method type.) The book goes on to cover neural field data and spike train data, spectral analysis, generalized linear models, coherence, and cross-frequency coupling. Each chapter offers a stand-alone case study that can be used separately as part of a targeted investigation. The book includes some mathematical discussion but does not focus on mathematical or statistical theory, emphasizing the practical instead. References are included for readers who want to explore the theoretical more deeply. The data and accompanying MATLAB code are freely available on the authors' website. The book can be used for upper-level undergraduate or graduate courses or as a professional reference.

Book Dynamical Systems in Neuroscience

Download or read book Dynamical Systems in Neuroscience written by Eugene M. Izhikevich and published by MIT Press. This book was released on 2010-01-22 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explains the relationship of electrophysiology, nonlinear dynamics, and the computational properties of neurons, with each concept presented in terms of both neuroscience and mathematics and illustrated using geometrical intuition. In order to model neuronal behavior or to interpret the results of modeling studies, neuroscientists must call upon methods of nonlinear dynamics. This book offers an introduction to nonlinear dynamical systems theory for researchers and graduate students in neuroscience. It also provides an overview of neuroscience for mathematicians who want to learn the basic facts of electrophysiology. Dynamical Systems in Neuroscience presents a systematic study of the relationship of electrophysiology, nonlinear dynamics, and computational properties of neurons. It emphasizes that information processing in the brain depends not only on the electrophysiological properties of neurons but also on their dynamical properties. The book introduces dynamical systems, starting with one- and two-dimensional Hodgkin-Huxley-type models and continuing to a description of bursting systems. Each chapter proceeds from the simple to the complex, and provides sample problems at the end. The book explains all necessary mathematical concepts using geometrical intuition; it includes many figures and few equations, making it especially suitable for non-mathematicians. Each concept is presented in terms of both neuroscience and mathematics, providing a link between the two disciplines. Nonlinear dynamical systems theory is at the core of computational neuroscience research, but it is not a standard part of the graduate neuroscience curriculum—or taught by math or physics department in a way that is suitable for students of biology. This book offers neuroscience students and researchers a comprehensive account of concepts and methods increasingly used in computational neuroscience. An additional chapter on synchronization, with more advanced material, can be found at the author's website, www.izhikevich.com.

Book Handbook of Episodic Memory

Download or read book Handbook of Episodic Memory written by Ekrem Dere and published by Elsevier. This book was released on 2008-09-04 with total page 647 pages. Available in PDF, EPUB and Kindle. Book excerpt: Episodic memory is the name of the kind of memory that records personal experiences instead of the mere remembering of impersonal facts and rules. This type of memory is extremely sensitive to ageing and disease so an understanding of the mechanisms of episodic memory might lead to the development of therapies suited to improve memory in some patient populations. Episodic memory is unique in that it includes an aspect of self-awareness and helps us to remember who we are in terms of what we did and what we have been passed through and what we should do in the future. This book brings together a renowned team of contributors from the fields of cognitive psychology, neuropsychology and behavioural and molecular neuroscience. It provides a detailed and comprehensive overview of recent developments in understanding human episodic memory and animal episodic-like memory in terms of concepts, methods, mechanisms, neurobiology and pathology. The work presented within this book will have a profound effect on the direction that future research in this topic will take. - The first and most current comprehensive handbook on what we know about episodic memory, the memory of events, time, place, and emotion, and a key feature of awareness and consciousness - Articles summarize our understanding of the mechanisms of episodic memory as well as surveying the neurobiology of epsidodic memory in patients, animal studies and functional imaging work - Includes 34 heavily illustrated chapters in two sections by the leading scientists in the field

Book Temporal Coding in the Brain

    Book Details:
  • Author : G. Buzsaki
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 3642851487
  • Pages : 308 pages

Download or read book Temporal Coding in the Brain written by G. Buzsaki and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Temporal coding in the brain documents a revolution now occurring in the neurosciences. How does parallel processing of information bind together the complex nature of the outer and our inner worlds? Do intrinsic oscillations and transient cooperative states of neurons represent the physiological basis of cognitive and motor functions of the brain? Some answers to these challenging issues are provided in this book by leading world experts of brain function. A common denominator of the works presented in this volume is the nature and mechanisms of neuronal cooperation in the temporal domain. The topics range from simple organisms to the human brain. The volume is intended for investigators and graduate students in neurophysiology, cognitive neuroscience, neural computation and neurology.

Book Using the Mathematics Literature

Download or read book Using the Mathematics Literature written by Kristine K. Fowler and published by CRC Press. This book was released on 2004-05-25 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: This reference serves as a reader-friendly guide to every basic tool and skill required in the mathematical library and helps mathematicians find resources in any format in the mathematics literature. It lists a wide range of standard texts, journals, review articles, newsgroups, and Internet and database tools for every major subfield in mathematics and details methods of access to primary literature sources of new research, applications, results, and techniques. Using the Mathematics Literature is the most comprehensive and up-to-date resource on mathematics literature in both print and electronic formats, presenting time-saving strategies for retrieval of the latest information.

Book Computational Explorations in Cognitive Neuroscience

Download or read book Computational Explorations in Cognitive Neuroscience written by Randall C. O'Reilly and published by MIT Press. This book was released on 2000-08-28 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text, based on a course taught by Randall O'Reilly and Yuko Munakata over the past several years, provides an in-depth introduction to the main ideas in the computational cognitive neuroscience. The goal of computational cognitive neuroscience is to understand how the brain embodies the mind by using biologically based computational models comprising networks of neuronlike units. This text, based on a course taught by Randall O'Reilly and Yuko Munakata over the past several years, provides an in-depth introduction to the main ideas in the field. The neural units in the simulations use equations based directly on the ion channels that govern the behavior of real neurons, and the neural networks incorporate anatomical and physiological properties of the neocortex. Thus the text provides the student with knowledge of the basic biology of the brain as well as the computational skills needed to simulate large-scale cognitive phenomena. The text consists of two parts. The first part covers basic neural computation mechanisms: individual neurons, neural networks, and learning mechanisms. The second part covers large-scale brain area organization and cognitive phenomena: perception and attention, memory, language, and higher-level cognition. The second part is relatively self-contained and can be used separately for mechanistically oriented cognitive neuroscience courses. Integrated throughout the text are more than forty different simulation models, many of them full-scale research-grade models, with friendly interfaces and accompanying exercises. The simulation software (PDP++, available for all major platforms) and simulations can be downloaded free of charge from the Web. Exercise solutions are available, and the text includes full information on the software.