EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Neoclassical Simulation of Tokamak Plasmas Using Continuum Gyrokinetc Code TEMPEST

Download or read book Neoclassical Simulation of Tokamak Plasmas Using Continuum Gyrokinetc Code TEMPEST written by and published by . This book was released on 2007 with total page 12 pages. Available in PDF, EPUB and Kindle. Book excerpt: We present gyrokinetic neoclassical simulations of tokamak plasmas with self-consistent electric field for the first time using a fully nonlinear (full-f) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five dimensional computational grid in phase space. The present implementation is a Method of Lines approach where the phase-space derivatives are discretized with finite differences and implicit backwards differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving gyrokinetic Poisson equation with self-consistent poloidal variation. With our 4D ([psi], [theta], [epsilon], [mu]) version of the TEMPEST code we compute radial particle and heat flux, the Geodesic-Acoustic Mode (GAM), and the development of neoclassical electric field, which we compare with neoclassical theory with a Lorentz collision model. The present work provides a numerical scheme and a new capability for self-consistently studying important aspects of neoclassical transport and rotations in toroidal magnetic fusion devices.

Book Fully Nonlinear Edge Gyrokinetic Simulations of Kinetic Geodesic Acoustic Modes and Boundary Flows

Download or read book Fully Nonlinear Edge Gyrokinetic Simulations of Kinetic Geodesic Acoustic Modes and Boundary Flows written by and published by . This book was released on 2008 with total page 10 pages. Available in PDF, EPUB and Kindle. Book excerpt: We present edge gyrokinetic neoclassical simulations of tokamak plasmas using the fully nonlinear (full-f) continuum code TEMPEST. A nonlinear Boltzmann model is used for the electrons. The electric field is obtained by solving the 2D gyrokinetic Poisson Equation. We demonstrate the following: (1) High harmonic resonances (n> 2) significantly enhance geodesic-acoustic mode (GAM) damping at high-q (tokamak safety factor), and are necessary to explain both the damping observed in our TEMPEST q-scans and experimental measurements of the scaling of the GAM amplitude with edge q95 in the absence of obvious evidence that there is a strong q dependence of the turbulent drive and damping of the GAM. (2) The kinetic GAM exists in the edge for steep density and temperature gradients in the form of outgoing waves, its radial scale is set by the ion temperature profile, and ion temperature inhomogeneity is necessary for GAM radial propagation. (3) The development of the neoclassical electric field evolves through different phases of relaxation, including GAMs, their radial propagation, and their long-time collisional decay. (4) Natural consequences of orbits in the pedestal and scrape-off layer region in divertor geometry are substantial non-Maxwellian ion distributions and flow characteristics qualitatively like those observed in experiments.

Book TEMPEST Simulations of the Plasma Transport in a Single Null Tokamak Geometry

Download or read book TEMPEST Simulations of the Plasma Transport in a Single Null Tokamak Geometry written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: We present edge kinetic ion transport simulations of tokamak plasmas in magnetic divertor geometry using the fully nonlinear (full-f) continuum code TEMPEST. Besides neoclassical transport, a term for divergence of anomalous kinetic radial flux is added to mock up the effect of turbulent transport. In order to study the relative roles of neoclassical and anomalous transport, TEMPEST simulations were carried out for plasma transport and flow dynamics in a single-null tokamak geometry, including the pedestal region that extends across the separatrix into the scrape-off layer and private flux region. In a series of TEMPEST simulations were conducted to investigate the transition of midplane pedestal heat flux and flow from the neoclassical to the turbulent limit and the transition of divertor heat flux and flow from the kinetic to the fluid regime via an anomalous transport scan and a density scan. The TEMPEST simulation results demonstrate that turbulent transport (as modelled by large diffusion) plays a similar role to collisional decorrelation of particle orbits and that the large turbulent transport (large diffusion) leads to an apparent Maxwellianization of the particle distribution. Moreover, we show the transition of parallel heat flux and flow at the entrance to the divertor plates from the fluid to the kinetic regime. For an absorbing divertor plate boundary condition, a non-half-Maxwellian is found due to the balance between upstream radial anomalous transport and energetic ion endloss.

Book Impurity Transport in Tokamak Plasmas

Download or read book Impurity Transport in Tokamak Plasmas written by Peter Donnel and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Impurity transport is an issue of utmost importance for tokamaks. Indeed high-Z materials are only partially ionized in the plasma core, so that they can lead to prohibitive radiative losses even at low concentrations, and impact dramatically plasma performance and stability. On-axis accumulation of tungsten has been widely observed in tokamaks.While the very core impurity peaking is generally attributed to neoclassical effects, turbulent transport could well dominate in the gradient region at ITER relevant collisionality. Up to recently, first principles simulations of corresponding fluxes were performed with different dedicated codes, implicitly assuming that both transport channels are separable and therefore additive. The validity of this assumption is questionned. Simulations obtained with the gyrokinetic code GYSELA have shown clear evidences of a neoclassical-turbulence synergy for impurity transport and allowed the identification of a mechanism that underly this synergy.An analytical work allows to compute the level and the structure of the axisymmetric part of the electric potential knowing the turbulence intensity. Two mechanisms are found for the generation of poloidal asymmetries of the electric potential: flow compressibility and the ballooning of the turbulence. A new prediction for the neoclassical impurity flux in presence of large poloidal asymmetries and pressure anisotropies has been derived. A fair agreement has been found between the new theoretical prediction for neoclassical impurity flux and the results of a GYSELA simulation displaying large poloidal asymmetries and pressure anisotropies induced by the presence of turbulence.

Book Advances in Comprehensive Gyrokinetic Simulations of Transport in Tokamaks

Download or read book Advances in Comprehensive Gyrokinetic Simulations of Transport in Tokamaks written by and published by . This book was released on 2004 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate core turbulent transport in actual experimental profiles and enable direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite [beta], equilibrium ExB shear stabilization, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius ([rho]{sub *}) so as to treat the profile shear stabilization and nonlocal effects which can break gyroBohm scaling. The code operates in either a cyclic flux-tube limit (which allows only gyroBohm scaling) or a globally with physical profile variation. Rohm scaling of DIII-D L-mode has been simulated with power flows matching experiment within error bars on the ion temperature gradient. Mechanisms for broken gyroBohm scaling, neoclassical ion flows embedded in turbulence, turbulent dynamos and profile corrugations, plasma pinches and impurity flow, and simulations at fixed flow rather than fixed gradient are illustrated and discussed.

Book TEMPEST Simulations of Collisionless Damping of Geodesic Acoustic Mode in Edge Plasma Pedestal

Download or read book TEMPEST Simulations of Collisionless Damping of Geodesic Acoustic Mode in Edge Plasma Pedestal written by and published by . This book was released on 2007 with total page 3 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fully nonlinear 4D TEMPEST gyrokinetic continuum code produces frequency, collisionless damping of geodesic-acoustic mode (GAM) and zonal flow with fully nonlinear Boltzmann electrons for the inverse aspect ratio [epsilon]-scan and the tokamak safety factor q-scan in homogeneous plasmas. The TEMPEST simulation shows that GAM exists in edge plasma pedestal for steep density and temperature gradients, and an initial GAM relaxes to the standard neoclassical residual, rather than Rosenbluth-Hinton residual due to the presence of ion-ion collisions. The enhanced GAM damping explains experimental BES measurements on the edge q scaling of the GAM amplitude.

Book Turbulence and Transport in Enhanced Confinement Regimes of Tokamaks

Download or read book Turbulence and Transport in Enhanced Confinement Regimes of Tokamaks written by and published by . This book was released on 1996 with total page 10 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Integrated Model for Transport and Large Scale Instabilities in Tokamak Plasmas

Download or read book Integrated Model for Transport and Large Scale Instabilities in Tokamak Plasmas written by Federico David Halpern and published by . This book was released on 2009 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: Improved models for neoclassical tearing modes and anomalous transport are developed and validated within integrated modeling codes to predict toroidal rotation, temperature and current density profiles in tokamak plasmas. Neoclassical tearing modes produce helical filaments of plasma, called magnetic islands, which have the effect of degrading tokamak plasma confinement or terminating the discharge. An improved code is developed in order to compute the widths of multiple simultaneous magnetic islands whose shapes are distorted by the radial variation in the magnetic perturbation [F. D. Halpern, et al., J. Plasma Physics 72 (2006) 1153]. It is found in simulations of DIII-D and JET tokamak discharges that multiple simultaneous magnetic islands produce a 10% to 20% reduction in plasma thermal confinement. If magnetic islands are allowed to grow to their full width in ITER fusion reactor simulations, fusion power production is reduced by a factor of four [F. D. Halpern, et al., Phys. Plasmas 13 (2006) 062510]. In addition to improving the prediction of neoclassical tearing modes, a new Multi-Mode transport model, MMM08, was developed to predict temperature and toroidal angular frequency profiles in simulations of tokamak discharges. The capability for predicting toroidal rotation is motivated by ITER simulation results that indicate that the effects of toroidal rotation can increase ITER fusion power production [F. D. Halpern et al., Phys. Plasmas 15 (2008), 062505]. The MMM08 model consists of an improved model for transport driven by ion drift modes [F. D. Halpern et al., Phys. Plasmas 15 (2008) 012304] together with a model for transport driven by short wavelength electron drift modes combined with models for transport driven by classical processes. The new MMM08 transport model was validated by comparing predictive simulation results with experimental data for 32 discharges in the DIII-D and JET tokamaks. It was found that the prediction of intrinsic plasma rotation is consistent with experimental measurements in discharges with zero net torque. A scaling relation was developed for the toroidal momentum confinement time (angular momentum divided by net torque) as a function of plasma current and torque per ion.

Book Gyrokinetic Neoclassical Study of the Bootstrap Current in the Tokamak Edge Pedestal with Fully Non linear Coulomb Collisions

Download or read book Gyrokinetic Neoclassical Study of the Bootstrap Current in the Tokamak Edge Pedestal with Fully Non linear Coulomb Collisions written by and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: As a follow-up on the drift-kinetic study of the non-local bootstrap current in the steep edge pedestal of tokamak plasma by Koh et al. [Phys. Plasmas 19, 072505 (2012)], a gyrokinetic neoclassical study is performed with gyrokinetic ions and drift-kinetic electrons. Besides the gyrokinetic improvement of ion physics from the drift-kinetic treatment, a fully non-linear Fokker-Planck collision operator--that conserves mass, momentum, and energy--is used instead of Koh et al.'s linearized collision operator in consideration of the possibility that the ion distribution function is non-Maxwellian in the steep pedestal. An inaccuracy in Koh et al.'s result is found in the steep edge pedestal that originated from a small error in the collisional momentum conservation. The present study concludes that (1) the bootstrap current in the steep edge pedestal is generally smaller than what has been predicted from the small banana-width (local) approximation [e.g., Sauter et al., Phys. Plasmas 6, 2834 (1999) and Belli et al., Plasma Phys. Controlled Fusion 50, 095010 (2008)], (2) the plasma flow evaluated from the local approximation can significantly deviate from the non-local results, and (3) the bootstrap current in the edge pedestal, where the passing particle region is small, can be dominantly carried by the trapped particles in a broad trapped boundary layer. In conclusion, a new analytic formula based on numerous gyrokinetic simulations using various magnetic equilibria and plasma profiles with self-consistent Grad-Shafranov solutions is constructed.

Book Gyrokinetic Simulation of Global Turbulent Transport Properties in Tokamak Experiments

Download or read book Gyrokinetic Simulation of Global Turbulent Transport Properties in Tokamak Experiments written by and published by . This book was released on 2006 with total page 92505 pages. Available in PDF, EPUB and Kindle. Book excerpt: A general geometry gyro-kinetic model for particle simulation of plasma turbulence in tokamak experiments is described. It incorporates the comprehensive influence of noncircular cross section, realistic plasma profiles, plasma rotation, neoclassical (equilibrium) electric fields, and Coulomb collisions. An interesting result of global turbulence development in a shaped tokamak plasma is presented with regard to nonlinear turbulence spreading into the linearly stable region. The mutual interaction between turbulence and zonal flows in collisionless plasmas is studied with a focus on identifying possible nonlinear saturation mechanisms for zonal flows. A bursting temporal behavior with a period longer than the geodesic acoustic oscillation period is observed even in a collisionless system. Our simulation results suggest that the zonal flows can drive turbulence. However, this process is too weak to be an effective zonal flow saturation mechanism.

Book Gyrokinetic Simulations of Turbulent Impurity Transport in Tokamaks

Download or read book Gyrokinetic Simulations of Turbulent Impurity Transport in Tokamaks written by Pierre Manas and published by . This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding impurity transport in the core of tokamak plasmas is central to achieving controlled fusion. Indeed impurities are ubiquitous in these devices and their presence in the core are detrimental to plasma confinement (fuel dilution, Bremsstrahlung). Recently, specific attention was given to the convective mechanism related to the gradient of the toroidal rotation to explain experimental flat/hollow impurity profiles in the plasma core. In this thesis, up-to-date modelling tools (NEO for neoclassical transport and GKW for turbulent transport) including the impact of toroidal rotation are used to study both the neoclassical and turbulent contributions to impurity fluxes. A comparison of the experimental and modelled carbon density peaking factor (R/LnC) is performed for a large number of baseline and hybrid H-mode plasmas (increased confinement regimes) with modest to high toroidal rotation from the European tokamak JET. Confrontation of experimental and modelled carbon peaking factor yields two main results. First roto-diffusion is found to have a nonnegligible impact on the carbon peaking factor at high values of the toroidal rotation frequency gradient. Second, there is a tendency to overpredict the experimental R/LnC in the core inner region where the carbon density profiles are hollow. This disagreement between experimental and modelled R/LnC, closely related to the collisionality, is also observed for the momentum transport channel which hints at a common parallel symmetry breaking mechanism lacking in the simulations.

Book COMPREHENSIVE GYROKINETIC SIMULATION OF TOKAMAK TURBULENCE AT FINITE RELATIVE GYRORADIUS

Download or read book COMPREHENSIVE GYROKINETIC SIMULATION OF TOKAMAK TURBULENCE AT FINITE RELATIVE GYRORADIUS written by and published by . This book was released on 2003 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: OAK B202 COMPREHENSIVE GYROKINETIC SIMULATION OF TOKAMAK TURBULENCE AT FINITE RELATIVE GYRORADIUS. A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate turbulent transport in actual experimental profiles and allow direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite beta, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius ([rho]*) so as to treat the profile shear stabilization effects which break gyroBohm scaling. The code operates in a cyclic flux tube limit which allows only gyroBohm scaling and a noncyclic radial annulus with physical profile variation. The later requires an adaptive source to maintain equilibrium profiles. Simple ITG simulations demonstrate the broken gyroBohm scaling depends on the actual rotational velocity shear rates competing with mode growth rates, direct comprehensive simulations of the DIII-D[rho]*-scaled L-mode experiments are presented as a quantitative test of gyrokinetics and the paradigm.