Download or read book Machine Learning of Inductive Bias written by Paul E. Utgoff and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is based on the author's Ph.D. dissertation[56]. The the sis research was conducted while the author was a graduate student in the Department of Computer Science at Rutgers University. The book was pre pared at the University of Massachusetts at Amherst where the author is currently an Assistant Professor in the Department of Computer and Infor mation Science. Programs that learn concepts from examples are guided not only by the examples (and counterexamples) that they observe, but also by bias that determines which concept is to be considered as following best from the ob servations. Selection of a concept represents an inductive leap because the concept then indicates the classification of instances that have not yet been observed by the learning program. Learning programs that make undesir able inductive leaps do so due to undesirable bias. The research problem addressed here is to show how a learning program can learn a desirable inductive bias.
Download or read book Inductive Biases in Machine Learning for Robotics and Control written by Michael Lutter and published by Springer Nature. This book was released on 2023-07-31 with total page 131 pages. Available in PDF, EPUB and Kindle. Book excerpt: One important robotics problem is “How can one program a robot to perform a task”? Classical robotics solves this problem by manually engineering modules for state estimation, planning, and control. In contrast, robot learning solely relies on black-box models and data. This book shows that these two approaches of classical engineering and black-box machine learning are not mutually exclusive. To solve tasks with robots, one can transfer insights from classical robotics to deep networks and obtain better learning algorithms for robotics and control. To highlight that incorporating existing knowledge as inductive biases in machine learning algorithms improves performance, this book covers different approaches for learning dynamics models and learning robust control policies. The presented algorithms leverage the knowledge of Newtonian Mechanics, Lagrangian Mechanics as well as the Hamilton-Jacobi-Isaacs differential equation as inductive bias and are evaluated on physical robots.
Download or read book An Intelligence in Our Image written by Osonde A. Osoba and published by Rand Corporation. This book was released on 2017-04-05 with total page 45 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning algorithms and artificial intelligence influence many aspects of life today. This report identifies some of their shortcomings and associated policy risks and examines some approaches for combating these problems.
Download or read book Natural General Intelligence written by Christopher Summerfield and published by Oxford University Press. This book was released on 2023-03-29 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the time of Turing, computer scientists have dreamed of building artificial general intelligence (AGI) - a system that can think, learn and act as humans do. Over recent years, the remarkable pace of progress in machine learning research has reawakened discussions about AGI. But what would a generally intelligent agent be able to do? What algorithms, architectures, or cognitive functions would it need? To answer these questions, we turn to the study of natural intelligence. Humans (and many other animals) have evolved precisely the sorts of generality of function that AI researchers see as the defining hallmark of intelligence. The fields of cognitive science and neuroscience have provided us with a language for describing the ingredients of natural intelligence in terms of computational mechanisms and cognitive functions and studied their implementation in neural circuits. Natural General Intelligence describes the algorithms and architectures that are driving progress in AI research in this language, by comparing current AI systems and biological brains side by side. In doing so, it addresses deep conceptual issues concerning how perceptual, memory and control systems work, and discusses the language in which we think and the structure of our knowledge. It also grapples with longstanding controversies about the nature of intelligence, and whether AI researchers should look to biology for inspiration. Ultimately, Summerfield aims to provide a bridge between the theories of those who study biological brains and the practice of those who are seeking to build artificial brains.
Download or read book The Algebraic Mind written by Gary F. Marcus and published by MIT Press. This book was released on 2019-01-01 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: In The Algebraic Mind, Gary Marcus attempts to integrate two theories about how the mind works, one that says that the mind is a computer-like manipulator of symbols, and another that says that the mind is a large network of neurons working together in parallel. Resisting the conventional wisdom that says that if the mind is a large neural network it cannot simultaneously be a manipulator of symbols, Marcus outlines a variety of ways in which neural systems could be organized so as to manipulate symbols, and he shows why such systems are more likely to provide an adequate substrate for language and cognition than neural systems that are inconsistent with the manipulation of symbols. Concluding with a discussion of how a neurally realized system of symbol-manipulation could have evolved and how such a system could unfold developmentally within the womb, Marcus helps to set the future agenda of cognitive neuroscience.
Download or read book Artificial Intelligence and Scientific Method written by Donald Gillies and published by OUP Oxford. This book was released on 1996-09-05 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence and Scientific Method examines the remarkable advances made in the field of AI over the past twenty years, discussing their profound implications for philosophy. Taking a clear, non-technical approach, Donald Gillies shows how current views on scientific method are challenged by this recent research, and suggests a new framework for the study of logic. Finally, he draws on work by such seminal thinkers as Bacon, Gödel, Popper, Penrose, and Lucas, to address the hotly contested question of whether computers might become intellectually superior to human beings.
Download or read book Parallel Problem Solving from Nature PPSN III written by Yuval Davidor and published by Springer Science & Business Media. This book was released on 1994-09-21 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: The challenges in ecosystem science encompass a broadening and strengthening of interdisciplinary ties, the transfer of knowledge of the ecosystem across scales, and the inclusion of anthropogenic impacts and human behavior into ecosystem, landscape, and regional models. The volume addresses these points within the context of studies in major ecosystem types viewed as the building blocks of central European landscapes. The research is evaluated to increase the understanding of the processes in order to unite ecosystem science with resource management. The comparison embraces coastal lowland forests, associated wetlands and lakes, agricultural land use, and montane and alpine forests. Techniques for upscaling focus on process modelling at stand and landscape scales and the use of remote sensing for landscape-level model parameterization and testing. The case studies demonstrate ways for ecosystem scientists, managers, and social scientists to cooperate.
Download or read book Advances in Natural Computation Fuzzy Systems and Knowledge Discovery written by Hongying Meng and published by Springer Nature. This book was released on 2021-06-26 with total page 1925 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book consists of papers on the recent progresses in the state of the art in natural computation, fuzzy systems and knowledge discovery. The book is useful for researchers, including professors, graduate students, as well as R & D staff in the industry, with a general interest in natural computation, fuzzy systems and knowledge discovery. The work printed in this book was presented at the 2020 16th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD 2020), held in Xi'an, China, from 19 to 21 December 2020. All papers were rigorously peer-reviewed by experts in the areas.
Download or read book The Era of Artificial Intelligence Machine Learning and Data Science in the Pharmaceutical Industry written by Stephanie K. Ashenden and published by Academic Press. This book was released on 2021-04-23 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Era of Artificial Intelligence, Machine Learning and Data Science in the Pharmaceutical Industry examines the drug discovery process, assessing how new technologies have improved effectiveness. Artificial intelligence and machine learning are considered the future for a wide range of disciplines and industries, including the pharmaceutical industry. In an environment where producing a single approved drug costs millions and takes many years of rigorous testing prior to its approval, reducing costs and time is of high interest. This book follows the journey that a drug company takes when producing a therapeutic, from the very beginning to ultimately benefitting a patient's life. This comprehensive resource will be useful to those working in the pharmaceutical industry, but will also be of interest to anyone doing research in chemical biology, computational chemistry, medicinal chemistry and bioinformatics. - Demonstrates how the prediction of toxic effects is performed, how to reduce costs in testing compounds, and its use in animal research - Written by the industrial teams who are conducting the work, showcasing how the technology has improved and where it should be further improved - Targets materials for a better understanding of techniques from different disciplines, thus creating a complete guide
Download or read book Computational Learning Theory and Natural Learning Systems Intersections between theory and experiment written by Stephen José Hanson and published by Mit Press. This book was released on 1994 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: Annotation These original contributions converge on an exciting and fruitful intersection of three historically distinct areas of learning research: computational learning theory, neural networks, and symbolic machine learning. Bridging theory and practice, computer science and psychology, they consider general issues in learning systems that could provide constraints for theory and at the same time interpret theoretical results in the context of experiments with actual learning systems. In all, nineteen chapters address questions such as, What is a natural system? How should learning systems gain from prior knowledge? If prior knowledge is important, how can we quantify how important? What makes a learning problem hard? How are neural networks and symbolic machine learning approaches similar? Is there a fundamental difference in the kind of task a neural network can easily solve as opposed to those a symbolic algorithm can easily solve? Stephen J. Hanson heads the Learning Systems Department at Siemens Corporate Research and is a Visiting Member of the Research Staff and Research Collaborator at the Cognitive Science Laboratory at Princeton University. George A. Drastal is Senior Research Scientist at Siemens Corporate Research. Ronald J. Rivest is Professor of Computer Science and Associate Director of the Laboratory for Computer Science at the Massachusetts Institute of Technology.
Download or read book Applications of Synthetic High Dimensional Data written by Sobczak-Michalowska, Marzena and published by IGI Global. This book was released on 2024-03-25 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: The need for tailored data for machine learning models is often unsatisfied, as it is considered too much of a risk in the real-world context. Synthetic data, an algorithmically birthed counterpart to operational data, is the linchpin for overcoming constraints associated with sensitive or regulated information. In high-dimensional data, where the dimensions of features and variables often surpass the number of available observations, the emergence of synthetic data heralds a transformation. Applications of Synthetic High Dimensional Data delves into the algorithms and applications underpinning the creation of synthetic data, which surpass the capabilities of authentic datasets in many cases. Beyond mere mimicry, synthetic data takes center stage in prioritizing the mathematical domain, becoming the crucible for training robust machine learning models. It serves not only as a simulation but also as a theoretical entity, permitting the consideration of unforeseen variables and facilitating fundamental problem-solving. This book navigates the multifaceted advantages of synthetic data, illuminating its role in protecting the privacy and confidentiality of authentic data. It also underscores the controlled generation of synthetic data as a mechanism to safeguard private information while maintaining a controlled resemblance to real-world datasets. This controlled generation ensures the preservation of privacy and facilitates learning across datasets, which is crucial when dealing with incomplete, scarce, or biased data. Ideal for researchers, professors, practitioners, faculty members, students, and online readers, this book transcends theoretical discourse.
Download or read book Graph Representation Learning written by William L. William L. Hamilton and published by Springer Nature. This book was released on 2022-06-01 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.
Download or read book AI 2019 Advances in Artificial Intelligence written by Jixue Liu and published by Springer Nature. This book was released on 2019-11-25 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the 32nd Australasian Joint Conference on Artificial Intelligence, AI 2019, held in Adelaide, SA, Australia, in December 2019. The 48 full papers presented in this volume were carefully reviewed and selected from 115 submissions. The paper were organized in topical sections named: game and multiagent systems; knowledge acquisition, representation, reasoning; machine learning and applications; natural language processing and text analytics; optimization and evolutionary computing; and image processing.
Download or read book Machine Learning Q and AI written by Sebastian Raschka and published by No Starch Press. This book was released on 2024-04-16 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn the answers to 30 cutting-edge questions in machine learning and AI and level up your expertise in the field. If you’re ready to venture beyond introductory concepts and dig deeper into machine learning, deep learning, and AI, the question-and-answer format of Machine Learning Q and AI will make things fast and easy for you, without a lot of mucking about. Born out of questions often fielded by author Sebastian Raschka, the direct, no-nonsense approach of this book makes advanced topics more accessible and genuinely engaging. Each brief, self-contained chapter journeys through a fundamental question in AI, unraveling it with clear explanations, diagrams, and hands-on exercises. WHAT'S INSIDE: FOCUSED CHAPTERS: Key questions in AI are answered concisely, and complex ideas are broken down into easily digestible parts. WIDE RANGE OF TOPICS: Raschka covers topics ranging from neural network architectures and model evaluation to computer vision and natural language processing. PRACTICAL APPLICATIONS: Learn techniques for enhancing model performance, fine-tuning large models, and more. You’ll also explore how to: • Manage the various sources of randomness in neural network training • Differentiate between encoder and decoder architectures in large language models • Reduce overfitting through data and model modifications • Construct confidence intervals for classifiers and optimize models with limited labeled data • Choose between different multi-GPU training paradigms and different types of generative AI models • Understand performance metrics for natural language processing • Make sense of the inductive biases in vision transformers If you’ve been on the hunt for the perfect resource to elevate your understanding of machine learning, Machine Learning Q and AI will make it easy for you to painlessly advance your knowledge beyond the basics.
Download or read book Explainable Natural Language Processing written by Anders Søgaard and published by Springer Nature. This book was released on 2022-06-01 with total page 107 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a taxonomy framework and survey of methods relevant to explaining the decisions and analyzing the inner workings of Natural Language Processing (NLP) models. The book is intended to provide a snapshot of Explainable NLP, though the field continues to rapidly grow. The book is intended to be both readable by first-year M.Sc. students and interesting to an expert audience. The book opens by motivating a focus on providing a consistent taxonomy, pointing out inconsistencies and redundancies in previous taxonomies. It goes on to present (i) a taxonomy or framework for thinking about how approaches to explainable NLP relate to one another; (ii) brief surveys of each of the classes in the taxonomy, with a focus on methods that are relevant for NLP; and (iii) a discussion of the inherent limitations of some classes of methods, as well as how to best evaluate them. Finally, the book closes by providing a list of resources for further research on explainability.
Download or read book Artificial Life VI written by Christoph Adami and published by MIT Press. This book was released on 1998 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since their inception in 1987, the Artificial Life meetings have grown from small workshops to truly international conferences, reflecting the fields increasing appeal to researchers in all areas of science.
Download or read book Philosophy and Theory of Artificial Intelligence 2021 written by Vincent C. Müller and published by Springer Nature. This book was released on 2022-11-14 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers contributions from the fourth edition of the Conference on "Philosophy and Theory of Artificial Intelligence" (PT-AI), held on 27-28th of September 2021 at Chalmers University of Technology, in Gothenburg, Sweden. It covers topics at the interface between philosophy, cognitive science, ethics and computing. It discusses advanced theories fostering the understanding of human cognition, human autonomy, dignity and morality, and the development of corresponding artificial cognitive structures, analyzing important aspects of the relationship between humans and AI systems, including the ethics of AI. This book offers a thought-provoking snapshot of what is currently going on, and what are the main challenges, in the multidisciplinary field of the philosophy of artificial intelligence.