EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Nanostructured Plasmonic Interferometers for Ultrasensitive Label free Biosensing

Download or read book Nanostructured Plasmonic Interferometers for Ultrasensitive Label free Biosensing written by Yongkang Gao and published by . This book was released on 2014 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optical biosensors that utilize surface plasmon resonance (SPR) technique to analyze the biomolecular interactions have been extensively explored in the last two decades and have become the gold standard for label-free biosensing. These powerful sensing tools allow fast, highly-sensitive monitoring of the interaction between biomolecules in real time, without the need for laborious fluorescent labeling, and have found widely ranging applications from biomedical diagnostics and drug discovery, to environmental sensing and food safety monitoring. However, the prism-coupling SPR geometry is complex and bulky, and has severely limited the integration of this technique into low-cost portable biomedical devices for point-of-care diagnostics and personal healthcare applications. Also, the complex prism-coupling scheme prevents the use of high numerical aperture (NA) optics to increase the spatial resolution for multi-channel, high-throughput detection in SPR imaging mode. This dissertation is focused on the design and fabrication of a promising new class of nanopatterned interferometric SPR sensors that integrate the strengths of miniaturized nanoplasmonic architectures with sensitive optical interferometry techniques to achieve bold advances in SPR biosensing. The nanosensor chips developed provide superior sensing performance comparable to conventional SPR systems, but employing a far simpler collinear optical transmission geometry, which largely facilitates system integration, miniaturization, and low-cost production. Moreover, the fabricated nanostructure-based SPR sensors feature a very small sensor footprint, allowing massive multiplexing on a chip for high-throughput detection. The successful transformation of SPR technique from bulky prism-coupling setup into this low-cost compact plasmonic platform would have a far-reaching impact on point-of-care diagnostic tools and also lead to advances in high-throughput sensing applications in proteomics, immunology, drug discovery, and fundamental cell biology research.

Book WHO List of Priority Medical Devices for Cancer Management

Download or read book WHO List of Priority Medical Devices for Cancer Management written by World Health Organization and published by . This book was released on 2017-05-09 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the model list and clearing house of appropriate, basic, and priority medical devices based on the list of clinical interventions selected from clinical guidelines on prevention, screening, diagnosis, treatment, palliative care, monitoring, and end of life care. This publication addresses medical devices that can be used for the management of cancer and specifically describes medical devices for six types of cancer: breast, cervical, colorectal, leukemia, lung, and prostate. This book is intended for ministries of health, public health planners, health technology managers, disease management, researchers, policy makers, funding, and procurement agencies and support and advocacy groups for cancer patients.

Book Engineering Plasmonic Nanostructures for Multi dimensional Biosensing with Surface Plasmon Resonance

Download or read book Engineering Plasmonic Nanostructures for Multi dimensional Biosensing with Surface Plasmon Resonance written by Chih-Yuan Chen and published by . This book was released on 2013 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: In addition, a new approach for SPR analysis of carbohydrate interactions has been developed with fluorochemistry and calcinated SPR gold film. Fluoroalkysilane was used to provide a monolayer modification of the hydrophobic interface for effective capturing of carbohydrate probes through non-covalent interaction. Molecular recognition with various lectins was investigated by real-time kinetic study. Polydimethylsiloxane (PDMS) channel chips were utilized that enabled parallel analysis for high-throughput detection of carbohydrate-protein interaction with SPR imaging technique. Matrix-free LDI-MS of the calcinated gold film and array is not compromised by the SAM coating, allowing for the development of new SPR-MS on-chip analysis. Finally, a novel label-free biosensing approach based on thin-film transmission interferometry (TTi) has been developed with nanoscale porous anodic alumina (PAA) film. The optical phenomenon of TTi has been successfully confirmed by simulation. Performance of TTi sensing in relation to the structural geometries of PAA nanofilm was studied, providing valuable insights into the optimization of TTi-substrate based on porosity, thickness, and pore diameter to achieve high biosensing sensitivity. This newly developed substrate also provides a convenient platform for biological studies of protein adsorption. As a surface-sensitive label-free detection, TTi shows a great potential to be incorporated into the ongoing on-chip SPR-MS biosensor development for achieving higher level of research possibilities.

Book Plasmonic Nanosensors for Biological and Chemical Threats

Download or read book Plasmonic Nanosensors for Biological and Chemical Threats written by Adil Denizli and published by CRC Press. This book was released on 2024-06-14 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biological and chemical warfare agents, including viruses, bacteria, and explosive and radioactive compounds, can induce illness or death in humans, animals, and plants. Plasmonic nanosensors as detection tools of these agents offer significant advantages, including rapid detection, sensitivity, selectivity, and portability. This book explores novel and updated research on different types of plasmonic nanosensors for analysis of biological and chemical threat agents. It covers a brief theory of plasmonic nanosensors, summarizes the state-of-art in the molecular recognition of biological and chemical threat agents, and describes the application of various types of nanosensors in the detection of these threat agents. This book • Brings together recent academic research from an interdisciplinary approach including chemistry, biology, and nanotechnology. • Discusses current trends and developments. • Describes applications of a variety of different types of plasmonic nanosensors. • Explores outlooks and expectations for this technology. Showcasing the latest achievements in plasmonic nanosensors, this book will appeal to researchers in materials, chemical, and environmental engineering as well as chemistry interested in exploring the application of sensors to support environmental monitoring and global health.

Book Label Free Biosensing

    Book Details:
  • Author : Michael J. Schöning
  • Publisher : Springer
  • Release : 2018-07-20
  • ISBN : 3319752200
  • Pages : 485 pages

Download or read book Label Free Biosensing written by Michael J. Schöning and published by Springer. This book was released on 2018-07-20 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume summarizes the state-of-the-art technologies, key advances and future trends in the field of label-free biosensing. It provides detailed insights into the different types of solid-state, label-free biosensors, their underlying transducer principles, advanced materials utilized, device-fabrication techniques and various applications. The book offers graduate students, academic researchers, and industry professionals a comprehensive source of information on all facets of label-free biosensing and the future trends in this flourishing field. Highlights of the subjects covered include label-free biosensing with: · semiconductor field-effect devices such as nanomaterial-modified capacitive electrolyte-insulator-semiconductor structures, silicon nanowire transistors, III-nitride semiconductor devices and light-addressable potentiometric sensors · impedimetric biosensors using planar and 3D electrodes · nanocavity and solid-state nanopore devices · carbon nanotube and graphene/graphene oxide biosensors · electrochemical biosensors using molecularly imprinted polymers · biomimetic sensors based on acoustic signal transduction · enzyme logic systems and digital biosensors based on the biocomputing concept · heat-transfer as a novel transducer principle · ultrasensitive surface plasmon resonance biosensors · magnetic biosensors and magnetic imaging devices

Book Plasmonic Nanostructures for Spectroscopy Detection and Label free Biosensing

Download or read book Plasmonic Nanostructures for Spectroscopy Detection and Label free Biosensing written by Gianluigi Manzo and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Plasmonics and Plasmonic Metamaterials

Download or read book Plasmonics and Plasmonic Metamaterials written by G. Shvets and published by World Scientific. This book was released on 2012 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: Manipulation of plasmonics from nano to micro scale. 1. Introduction. 2. Form-Birefringent metal and its plasmonic anisotropy. 3. Plasmonic photonic crystal. 4. Fourier plasmonics. 5. Nanoscale optical field localization. 6. Conclusions and outlook -- 11. Dielectric-loaded plasmonic waveguide components. 1. Introduction. 2. Design of waveguide dimensions. 3. Sample preparation and near-field characterization. 4. Excitation and propagation of guided modes. 5. Waveguide bends and splitters. 6. Coupling between waveguides. 7. Waveguide-ring resonators. 8. Bragg gratings. 9. Discussion-- 12. Manipulating nanoparticles and enhancing spectroscopy with surface plasmons. 1. Introduction. 2. Propulsion of gold nanoparticles with surface plasmon polaritons. 3. Double resonance substrates for surface-enhanced raman spectroscopy. 4. Conclusions and outlook -- 13. Analysis of light scattering by nanoobjects on a plane surface via discrete sources method. 1. Introduction. 2. Light scattering by a nanorod. 3. Light scattering by a nanoshell. 4. Summary -- 14. Computational techniques for plasmonic antennas and waveguides. 1. Introduction. 2. Time domain solvers. 3. Frequency domain solvers. 4. Plasmonic antennas. 5. Plasmonic waveguides. 6. Advanced structures. 7. Conclusions

Book The Current Trends of Optics and Photonics

Download or read book The Current Trends of Optics and Photonics written by Cheng-Chung Lee and published by Springer. This book was released on 2014-11-25 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optics and photonics offer new and vibrant approaches to meeting the challenges of the 21st century concerning energy conservation, education, agriculture, personal health and the environment. One of the most effective ways to address these global problems is to provide updated and reliable content on light-based technologies. Optical thin films and meta-materials, lasers, optical communications, light-emitting diodes, solar cells, liquid crystal technology, nanophotonics and biophotonics all play vital roles in enriching our lives. We hope to raise readers’ awareness of how optical technologies are now promoting sustainable development and providing reliable solutions to basic human needs. Furthermore, in order to broaden new research fields, we hope to inspire them to pursue further cutting-edge breakthroughs on the basis of the accomplishments that have already been made.

Book Lab on Fiber Technology

Download or read book Lab on Fiber Technology written by Andrea Cusano and published by Springer. This book was released on 2014-07-29 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on a research field that is rapidly emerging as one of the most promising ones for the global optics and photonics community: the “lab-on-fiber” technology. Inspired by the well-established "lab on-a-chip" concept, this new technology essentially envisages novel and highly functionalized devices completely integrated into a single optical fiber for both communication and sensing applications. Based on the R&D experience of some of the world's leading authorities in the fields of optics, photonics, nanotechnology, and material science, this book provides a broad and accurate description of the main developments and achievements in the lab-on-fiber technology roadmap, also highlighting the new perspectives and challenges to be faced. This book is essential for scientists interested in the cutting-edge fiber optic technology, but also for graduate students.

Book Design and Fabrication of Integrated Plasmonic Platforms for Ultra sensitive Molecular and Biomolecular Detections

Download or read book Design and Fabrication of Integrated Plasmonic Platforms for Ultra sensitive Molecular and Biomolecular Detections written by Mohammadali Tabatabaei and published by . This book was released on 2015 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the major challenges in analytical and biological sciences is to develop a device to obtain unambiguous chemical and structural properties of a material or a probe biomolecule with high reproducibility and ultra-high sensitivity. Moreover, in addition to such a high sensitivity, other cases such as minimum intrusiveness, small amounts of analyte, and short acquisition time and high reproducibility are key parameters that can be valued in any analytical measurements. Among the promising methods to achieve such endeavor plasmon-mediated surface-enhanced spectroscopic techniques, such as surface-enhanced Raman spectroscopy (SERS), are considered as suitable options. Such techniques take advantage of the interaction between an optical field and a metallic nanostructure to magnify the electromagnetic (EM) field in the proximity of the nanostructure. This results in an amplified signal of the vibrational fingerprints of the adsorbed probe molecules onto the metallic surface. Keys to obtaining ultra-sensitive SERS measurements are the development of rationally-designed plasmonic nanostructures. Besides, a major challenge for controlled and reliable sensitive measurements of probe biomolecules on biological cells gives rise due to the intrinsic random positioning and proliferation of these cells over a substrate such as a glass coverslip. In this thesis, the rational design and development of a fluorocarbon thin film micropatterned platform is introduced for controlled programming of conventional and transfected cells proliferation over the substrate. They also provided high throughput capability of controlled neuronal network connections towards advanced imaging and sensitive detection of biomolecules of interest at nanoscale resolution. This micropatterned platform was also integrated with optimized plasmonic nanostructures fabricated by nanosphere lithography (NSL) for SERS biosensing of glycans using a Raman reporter over the positionally-controlled single cells surfaces. In addition to providing controlled plasmon-mediated measurements, the fabrications of two newly-developed 3D plasmonic nanostructures have been introduced in this thesis. These are nanopyramids arrays fabricated by NSL and arrays of nanoholes with co-registered nanocones fabricated by electron-beam lithography (EBL). These approaches have been used not only for ultra-sensitive molecular detection at the monolayer level in a variety of configurations, but also towards label-free single molecule detection at sub-femtomolar concentrations.

Book Optical Biosensors

    Book Details:
  • Author : Frances S. Ligler
  • Publisher : Elsevier
  • Release : 2011-10-13
  • ISBN : 0080564941
  • Pages : 721 pages

Download or read book Optical Biosensors written by Frances S. Ligler and published by Elsevier. This book was released on 2011-10-13 with total page 721 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optical Biosensors, Second Edition describes the principles of successful systems, examples of applications, and evaluates the advantages and deficiencies of each. It also addresses future developments on two levels: possible improvements in existing systems and emerging technologies that could provide new capabilities in the future. The book is formatted for ease of use and is therefore suitable for scientists and engineers, students and researcher at all levels in the field. Comprehensive analysis and review of the underlying principles by optical biosensors Updates and informs on all the latest developments and hot topic areas Evaluates current methods showing the advantages and disadvantages of various systems involved

Book Emerging Carbon Based Nanocomposites for Environmental Applications

Download or read book Emerging Carbon Based Nanocomposites for Environmental Applications written by Ajay Kumar Mishra and published by John Wiley & Sons. This book was released on 2020-09-29 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is a comprehensive deep-dive into the developments and advancements of emerging carbon-based nanocomposites for wastewater applications. Science and technology development are tackling one of the world's most pressing concerns—water contamination and effective treatment. Carbon-based nanocomposites have emerged as one of the leading materials in this treatment push because of their properties and high ability for the catalytic degradation of contaminants from aqueous segments. The 10 chapters in this timely book cover the follows areas: Carbon-based nanocomposites for remediation of heavy metals and organic pollutants from wastewater Functional green carbon nanocomposites for heavy-metal treatment in water Green nanocomposites and applications in environmentally-friendly carbon nanomaterials Carbon-based nanocomposites as heterogeneous catalysts for organic reactions in environment-friendly solvents Carbon-based polymer nanocomposite applications Biochar-based adsorbents for the removal of organic pollutants from aqueous systems Carbon nanomaterial-based green nanocomposites The removal of trihalomethanes from water using nanofiltration membranes Nanocomposite materials as electrode materials in microbial fuel cells for the removal of water pollutants Plasmonic smart nanosensors for the determination of environmental pollutants.

Book Nanobiosensors

    Book Details:
  • Author : Alexandru Grumezescu
  • Publisher : Academic Press
  • Release : 2016-09-28
  • ISBN : 0128043725
  • Pages : 928 pages

Download or read book Nanobiosensors written by Alexandru Grumezescu and published by Academic Press. This book was released on 2016-09-28 with total page 928 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanobiosensors: Nanotechnology in the Agri-Food Industry, Volume 8, provides the latest information on the increasing demand for robust, rapid, inexpensive, and safe alternative technologies that monitor, test, and detect harmful or potentially dangerous foods. Due to their high sensitivity and selectivity, nanobiosensors have attracted attention for their use in monitoring not only biological contaminants in food, but also potential chemical and physical hazards. This book offers a broad overview regarding the current progress made in the field of nanosensors, including cutting-edge technological progress and the impact of these devices on the food industry. Special attention is given to the detection of microbial contaminants and harmful metabolotes, such as toxins and hormones, which have a great impact on both humans and animal health and feed. Includes the most up-to-date information on nanoparticles based biosensors and quantum dots for biological detection Provides application methods and techniques for research analysis for bacteriological detection and food testing Presents studies using analytical tools to improve food safety and quality analysis

Book Phase Sensitive Spectral Domain Interferometry for Label Free Biomolecular Interaction Analysis and Biosensing Applications

Download or read book Phase Sensitive Spectral Domain Interferometry for Label Free Biomolecular Interaction Analysis and Biosensing Applications written by Sajal Chirvi and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomolecular interaction analysis (BIA) plays vital role in wide variety of fields, which include biomedical research, pharmaceutical industry, medical diagnostics, and biotechnology industry. Study and quantification of interactions between natural biomolecules (proteins, enzymes, DNA) and artificially synthesized molecules (drugs) is routinely done using various labeled and label-free BIA techniques. Labeled BIA (Chemiluminescence, Fluorescence, Radioactive) techniques suffer from steric hindrance of labels on interaction site, difficulty of attaching labels to molecules, higher cost and time of assay development. Label free techniques with real time detection capabilities have demonstrated advantages over traditional labeled techniques. The gold standard for label free BIA is surface Plasmon resonance (SPR) that detects and quantifies the changes in refractive index of the ligand-analyte complex molecule with high sensitivity. Although SPR is a highly sensitive BIA technique, it requires custom-made sensor chips and is not well suited for highly multiplexed BIA required in high throughput applications. Moreover implementation of SPR on various biosensing platforms is limited. In this research work spectral domain phase sensitive interferometry (SD-PSI) has been developed for label-free BIA and biosensing applications to address limitations of SPR and other label free techniques. One distinct advantage of SD-PSI compared to other label-free techniques is that it does not require use of custom fabricated biosensor substrates. Laboratory grade, off-the-shelf glass or plastic substrates of suitable thickness with proper surface functionalization are used as biosensor chips. SD-PSI is tested on four separate BIA and biosensing platforms, which include multi-well plate, flow cell, fiber probe with integrated optics and fiber tip biosensor. Sensitivity of 33 ng/ml for anti-IgG is achieved using multi-well platform. Principle of coherence multiplexing for multi-channel label-free biosensing applications is introduced. Simultaneous interrogation of multiple biosensors is achievable with a single spectral domain phase sensitive interferometer by coding the individual sensograms in coherence-multiplexed channels. Experimental results demonstrating multiplexed quantitative biomolecular interaction analysis of antibodies binding to antigen coated functionalized biosensor chip surfaces on different platforms are presented.

Book Plasmonic Optical Fiber Biosensors

Download or read book Plasmonic Optical Fiber Biosensors written by Christophe Caucheteur and published by . This book was released on 2023-04-30 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Plasmonic optical biosensors allow label-free and highly sensitive detection of analytes, usually within a dedicated microfluidic system that brings the sample to the biosensor surface. Since the nineties, an optical fiber counterpart to the bulky Kretschmann prism configuration implemented in most commercial systems is investigated and developed to allow in situ measurements with a miniaturized system. Thanks to straightforward light injection and considering the optical fiber geometry, such developments indeed allow remote operation in very small volumes of analytes of the order of 10 μL or even less. The plasmonic optical fiber technology is now mature to such a degree that it becomes to be industrialized. Various configurations comprising unclad/etched multimode optical fibers, D-shaped fibers, U-bent fibers, interferometers, and optical fiber gratings (tilted and long period fiber gratings) were reported. When combined with thin metal films or nanoparticles and functionalized with antibodies, aptamers or other relevant bioreceptors, they show unprecedented performance in terms of sensitivity and limit of detection. Also, the target applications are ever growing, covering biomedical sensing, environmental sensing, and food quality monitoring, among others. This will be a great resource for photonics Engineers and Bioengineers (Industrial engineers and researchers.

Book Plasmonic Paper as a Novel Chem bio Detection Platform

Download or read book Plasmonic Paper as a Novel Chem bio Detection Platform written by Limei Tian and published by . This book was released on 2014 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: The time varying electric field of electromagnetic (EM) radiation causes oscillation of conduction electrons of metal nanoparticles. The resonance of such oscillation, termed localized surface plasmon resonance (LSPR), falls into the visible spectral region for noble metals such as gold, silver and copper. LSPR of metal nanostructures is sensitive to numerous factors such as composition, size, shape, dielectric properties of surrounding medium, and proximity to other nanostructures (plasmon coupling). The sensitivity of LSPR to the refractive index of surrounding medium renders it an attractive platform for chemical and biological sensing. When the excitation light is in resonance with the plasmon frequency of the metal nanoparticle, it radiates a characteristic dipolar radiation causing a characteristic spatial distribution in which certain areas show higher EM field intensity, which is manifested as electromagnetic field enhancement. Surface enhanced Raman scattering (SERS) involves dramatic enhancement of the intensity of the Raman scattering from the analyte adsorbed on or in proximity to a nanostructured metal surface exhibiting such strong EM field enhancement. Both LSPR and SERS have been widely investigated for highly sensitive and label-free chemical & biological sensors. Most of the SERS/LSPR sensors demonstrated so far rely on rigid planar substrates (e.g., glass, silicon) owing to the well-established lithographic approaches, which are routinely employed for either fabrication or assembly of plasmonic nanotransducers. In many cases, their rigid nature results in low conformal contact with the sample and hence poor sample collection efficiency. We hypothesized that paper substrates are an excellent alternative to conventional rigid substrates to significantly improve the (multi- )functionality of LSPR/SERS substrates, dramatically simplify the fabrication procedures and lower the cost. The choice of paper substrates for the implementation of SERS/LSPR sensors is rationalized by numerous advantages such as (i) high specific surface area resulting in large dynamic range (ii) excellent wicking properties for rapid uptake and transport of analytes to test domains (iii) compatibility with conventional printing approaches, enabling multi-analyte plasmonic sensors (iv) significant reduction in cost (v) smaller sample volume requirement (vi) easy disposability. In this work, we have introduced novel SERS and LSPR substrates based on conventional filter paper decorated with plasmonic nanostructures, called plasmonic paper. A flexible SERS substrate based on common filter paper adsorbed with gold nanostructures allows conformal contact with real-world surfaces, enabling rapid trace detection. To realize multifunctional SERS substrates, paper substrates were cut into star-shaped structures and the fingers were differentially functionalized with polyelectrolytes that allows separation and pre-concentration of different components of a complex sample in a small surface area by taking advantage of the properties of cellulose paper and shape-enhanced capillary effect. Plasmonic paper can also serve as a novel LSPR biosensing platform by decorating the paper substrate with biofunctionalized nanostructures. Furthermore, calligraphy approach was employed to create well-isolated test domains on paper substrates using functionalized plasmonic nanostructures as ink for multiplexed chemical sensing and label-free biosensing. These plasmonic paper substrates exhibit excellent sample collection efficiency and do not require complex fabrication processes. This class of substrates is expected to have applications not only to first responders and military personal but also to several areas of medical, food analysis, and environmental research.

Book Quantum Plasmonics

    Book Details:
  • Author : Sergey I. Bozhevolnyi
  • Publisher : Springer
  • Release : 2016-11-26
  • ISBN : 3319458205
  • Pages : 338 pages

Download or read book Quantum Plasmonics written by Sergey I. Bozhevolnyi and published by Springer. This book was released on 2016-11-26 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the latest results of quantum properties of light in the nanostructured environment supporting surface plasmons, including waveguide quantum electrodynamics, quantum emitters, strong-coupling phenomena and lasing in plasmonic structures. Different approaches are described for controlling the emission and propagation of light with extreme light confinement and field enhancement provided by surface plasmons. Recent progress is reviewed in both experimental and theoretical investigations within quantum plasmonics, elucidating the fundamental physical phenomena involved and discussing the realization of quantum-controlled devices, including single-photon sources, transistors and ultra-compact circuitry at the nanoscale.