EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Nanostructure Design and Interface Engineering for Solar Energy Conversion

Download or read book Nanostructure Design and Interface Engineering for Solar Energy Conversion written by Yanhao Yu and published by . This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Increasing energy and environmental demand have promoted the exploration of research in green and renewable energy besides fossil fuel, including solar, nuclear, biomass, hydro, wind, mechanical, and thermal energy. The renewable source is expected to account for 50% of installed power generation by 2030. Among the various renewable energy sources, solar irradiation is the most popular target since it widely shines around the entire earth. To accomplish practical sunlight conversion, photoelectrodes desirably need the following features: efficient light absorption, rapid charge separation and transport, and superior stability in the harsh environment. These properties are predominantly determined, and thus can be effectively tuned, by the geometry configuration, the surface chemistry, and the electronic band structure of electrode materials. Aiming at developing efficient solar conversion systems, this dissertation primarily focuses on designing sophisticated electrode frameworks, tuning their interfacial electronic band structures, and engineering their surface chemistry. Chapter 1 is a general review covering the atomic layer deposition (ALD)-based three dimensional (3D) nanostructure design and surface protecting strategy for photoelectrochemical (PEC) water splitting. This background lays the foundation for understanding the evolution mechanism of 3D TiO2 discussed in chapter 2 and chapter 3, reveals the motivation of the polymer doping study discussed in chapter 4, highlights the significance of the interfacial electronic band and chemistry control discussed in chapter 5 and chapter 6. The main discussion starts with a tree-like 3D TiO2 nanowire (NW) architecture manufactured through coupling a vapor phase Kirkendall effect and a high temperature ALD process. Compared with conventional one dimensional NW geometry, the 3D architecture can accomplish enhanced light absorption and promoted interfacial electrochemical reactions without comprising the superior charge transfer property of NWs, giving rise to 7 times improvement of PEC photocurrent density. When integrating with lead iodide perovskite solar cell, this 3D TiO2 achieved almost 2 times higher power conversion efficiency over ZnO and TiO2 NWs due to the effective loading of photoactive perovskite. Concurrently, the unique vapor solid Kirkendall effect discovered during the 3D TiO2 fabrication is able to transform a variety of ZnO nanostructures into hollow TiO2 with conserved morphology code, providing a new methodology for hierarchical material assembly. Afterwards, on the basis of sequential infiltration synthesis (SIS), a facile polymer doping approach that can efficiently modify the bulk electronic properties of polymers is introduced. Taking triboelectric nanogenerator (TENG) as an example, we doped the triboelectric polymers with metal oxides such as AlO[x] and ZnO[x]. Consequently, the bulk and surface electrical property of triboelectric polymers were successfully altered towards the desired direction and therefore simultaneously enhance the output and stability of electronic devices. Later on, we demonstrate a tuning of electronic band structure fulfilled through permanent ferroelectric polarization. By converting TiO2 NW surface to a ferroelectric barium titanate (BTO) thin film, the amplitude and width of the depletion region of TiO2 NW were effectively manipulated as a response to the BTO ferroelectric charge. Accordingly, the charge separation efficiency and photocurrent density were altered towards the favorable direction. Under optimized condition, 67% enhancement of photocurrent density was accomplished. The last part of the dissertation presents a low temperature TiO2 protecting strategy for silicon PEC photoanodes. Such a thin TiO2 protection can simultaneously improve the photocurrent density and operational stability of a black silicon PEC electrode. The exceptional PEC performance was found to be a result of the promoted charge separation efficiency, which was attributed to the effective TiO2 passivation of the defective sites on black silicon surface. Meanwhile, this ALD-grown TiO2 film is able to decouple the chemically unstable black silicon from the corrosive electrochemical reactions, resulting in a significant improvement of operational stability under both in-air and in-electrolyte conditions.

Book Nanostructured Materials for Next Generation Energy Storage and Conversion

Download or read book Nanostructured Materials for Next Generation Energy Storage and Conversion written by Tulay Aygan Atesin and published by Springer Nature. This book was released on 2019-11-15 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanostructured Materials for Next-Generation Energy Storage and Conversion: Photovoltaic and Solar Energy, is volume 4 of a 4-volume series on sustainable energy. Photovoltaic and Solar Energy while being a comprehensive reference work, is written with minimal jargon related to various aspects of solar energy and energy policies. It is authored by leading experts in the field, and lays out theory, practice, and simulation studies related to solar energy and allied applications including policy, economic and technological challenges. Topics covered include: introduction to solar energy, fundamentals of solar radiation, heat transfer, thermal collection and conversion, solar economy, heating, cooling, dehumidification systems, power and process heat, solar power conversion, policy and applications pertinent to solar energy as viable alternatives to fossil fuels. The aim of the book is to present all the information necessary for the design and analysis of solar energy systems for engineers, material scientists, economics, policy analysts, graduate students, senior undergraduates, solar energy practitioner, as well as policy or lawmakers in the field of energy policy, international energy trade, and libraries which house technical handbooks related to energy, energy policy and applications.

Book Nanostructured Materials for Solar Energy Conversion

Download or read book Nanostructured Materials for Solar Energy Conversion written by Tetsuo Soga and published by Elsevier. This book was released on 2006-12-14 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanostructured Materials for Solar Energy Conversion covers a wide variety of materials and device types from inorganic materials to organic materials. This book deals with basic semiconductor physics, modelling of nanostructured solar cell, nanostructure of conventional solar cells such as silicon, CIS and CdTe, dye-sensitized solar cell, organic solar cell, photosynthetic materials, fullerene, extremely thin absorber (ETA) solar cell, quantum structured solar cell, intermediate band solar cell, carbon nanotube, etc. including basic principle and the latest results. There are many books written on conventional p-n junction solar cells, but few books focus on new concepts in this area.* Focuses on the use of nanostructured materials for solar energy* Looks at a wide variety of materials and device types* Covers both organic and inorganic materials

Book Rational Design of Solar Cells for Efficient Solar Energy Conversion

Download or read book Rational Design of Solar Cells for Efficient Solar Energy Conversion written by Alagarsamy Pandikumar and published by John Wiley & Sons. This book was released on 2018-08-31 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: An interdisciplinary guide to the newest solar cell technology for efficient renewable energy Rational Design of Solar Cells for Efficient Solar Energy Conversion explores the development of the most recent solar technology and materials used to manufacture solar cells in order to achieve higher solar energy conversion efficiency. The text offers an interdisciplinary approach and combines information on dye-sensitized solar cells, organic solar cells, polymer solar cells, perovskite solar cells, and quantum dot solar cells. The text contains contributions from noted experts in the fields of chemistry, physics, materials science, and engineering. The authors review the development of components such as photoanodes, sensitizers, electrolytes, and photocathodes for high performance dye-sensitized solar cells. In addition, the text puts the focus on the design of material assemblies to achieve higher solar energy conversion. This important resource: Offers a comprehensive review of recent developments in solar cell technology Includes information on a variety of solar cell materials and devices, focusing on dye-sensitized solar cells Contains a thorough approach beginning with the fundamental material characterization and concluding with real-world device application. Presents content from researchers in multiple fields of study such as physicists, engineers, and material scientists Written for researchers, scientists, and engineers in university and industry laboratories, Rational Design of Solar Cells for Efficient Solar Energy Conversion offers a comprehensive review of the newest developments and applications of solar cells with contributions from a range of experts in various disciplines.

Book Nanostructured  Functional  and Flexible Materials for Energy Conversion and Storage Systems

Download or read book Nanostructured Functional and Flexible Materials for Energy Conversion and Storage Systems written by Alagarsamy Pandikumar and published by Elsevier. This book was released on 2020-05-27 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems gathers and reviews developments within the field of nanostructured functional materials towards energy conversion and storage. Contributions from leading research groups involved in interdisciplinary research in the fields of chemistry, physics and materials science and engineering are presented. Chapters dealing with the development of nanostructured materials for energy conversion processes, including oxygen reduction, methanol oxidation, oxygen evolution, hydrogen evolution, formic acid oxidation and solar cells are discussed. The work concludes with a look at the application of nanostructured functional materials in energy storage system, such as supercapacitors and batteries. With its distinguished international team of expert contributors, this book will be an indispensable tool for anyone involved in the field of energy conversion and storage, including materials engineers, scientists and academics. Covers the importance of energy conversion and storage systems and the application of nanostructured functional materials toward energy-relevant catalytic processes Discusses the basic principles involved in energy conversion and storage systems Presents the role of nanostructured functional materials in the current scenario of energy-related research and development

Book Sustainable Material Solutions for Solar Energy Technologies

Download or read book Sustainable Material Solutions for Solar Energy Technologies written by Mariana Amorim Fraga and published by Elsevier. This book was released on 2021-08-18 with total page 669 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sustainable Material Solutions for Solar Energy Technologies: Processing Techniques and Applications provides an overview of challenges that must be addressed to efficiently utilize solar energy. The book explores novel materials and device architectures that have been developed to optimize energy conversion efficiencies and minimize environmental impacts. Advances in technologies for harnessing solar energy are extensively discussed, with topics including materials processing, device fabrication, sustainability of materials and manufacturing, and current state-of-the-art. Leading international experts discuss the applications, challenges, and future prospects of research in this increasingly vital field, providing a valuable resource for students and researchers working in this field. - Explores the fundamentals of sustainable materials for solar energy applications, with in-depth discussions of the most promising material solutions for solar energy technologies: photocatalysis, photovoltaic, hydrogen production, harvesting and storage - Discusses the environmental challenges to be overcome and importance of efficient materials utilization for clean energy - Looks at design materials processing and optimization of device fabrication via metrics such as power-to-weight ratio, effectiveness at EOL compared to BOL, and life-cycle analysis

Book Metal Nanocrystals

    Book Details:
  • Author : Kallum M. Koczkur
  • Publisher : American Chemical Society
  • Release : 2020-07-31
  • ISBN : 0841299013
  • Pages : 164 pages

Download or read book Metal Nanocrystals written by Kallum M. Koczkur and published by American Chemical Society. This book was released on 2020-07-31 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our society depends heavily on metals. They are ubiquitous construction materials, critical interconnects in integrated circuits, common coinage materials, and more. Excitingly, new uses for metals are emerging with the advent of nanoscience, as metal crystals with nanoscale dimensions can display new and tunable properties. The optical and photothermal properties of metal nanocrystals have led to cancer diagnosis and treatment platforms now in clinical trials, while, at the same time, the ability to tune the surface features of metal nanocrystals is giving rise to designer catalysts that enable more sustainable use of precious resources. These are just two examples of how metal nanocrystals are addressing important social needs.

Book Nanostructured Solar Cells

Download or read book Nanostructured Solar Cells written by Narottam Das and published by BoD – Books on Demand. This book was released on 2017-02-22 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanostructured solar cells are very important in renewable energy sector as well as in environmental aspects, because it is environment friendly. The nano-grating structures (such as triangular or conical shaped) have a gradual change in refractive index which acts as a multilayer antireflective coating that is leading to reduced light reflection losses over broadband ranges of wavelength and angle of incidence. There are different types of losses in solar cells that always reduce the conversion efficiency, but the light reflection loss is the most important factor that decreases the conversion efficiency of solar cells significantly. The antireflective coating is an optical coating which is applied to the surface of lenses or any optical devices to reduce the light reflection losses. This coating assists for the light trapping capturing capacity or improves the efficiency of optical devices, such as lenses or solar cells. Hence, the multilayer antireflective coatings can reduce the light reflection losses and increases the conversion efficiency of nanostructured solar cells.

Book Nanomaterials for Solar Cell Applications

Download or read book Nanomaterials for Solar Cell Applications written by Sabu Thomas and published by Elsevier. This book was released on 2019-06-12 with total page 761 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanomaterials for Solar Cell Applications provides a review of recent developments in the field of nanomaterials based solar cells. It begins with a discussion of the fundamentals of nanomaterials for solar calls, including a discussion of lifecycle assessments and characterization techniques. Next, it reviews various types of solar cells, i.e., Thin film, Metal-oxide, Nanowire, Nanorod and Nanoporous materials, and more. Other topics covered include a review of quantum dot sensitized and perovskite and polymer nanocomposites-based solar cells. This book is an ideal resource for those working in this evolving field of nanomaterials and renewable energy. - Provides a well-organized approach to the use of nanomaterials for solar cell applications - Discusses the synthesis, characterization and applications of traditional and new material - Includes coverage of emerging nanomaterials, such as graphene, graphene-derivatives and perovskites

Book Interface Engineering in Inorganic absorber Nanostructured Solar Cells

Download or read book Interface Engineering in Inorganic absorber Nanostructured Solar Cells written by Katherine Elizabeth Roelofs and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The focus of this work is variants on the dye-sensitized solar cell (DSSC) that employ inorganic materials as the light absorber, replacing the organic dye molecules used in DSSCs. Such DSSC-inspired devices are emerging technologies in the broader class of thin film solar cells, and include quantum-dot sensitized solar cells (QDSSCs) and perovskites solar cells (PSCs). Quantum-dot sensitized solar cells employ semiconductor nanocrystals, or quantum dots, as the light absorber. The band gap of quantum dots varies with size, allowing for a tunable absorption onset in these devices, among other benefits. PSCs, in which the absorber is CH3NH3PbI3, or variants thereof, with the perovskites crystal structure, first attracted attention in 2012 and have shown an unprecedented rise in efficiency to current record values of 20.1%. QDSSCs and PSCs can be fabricated completely from solution processed materials that can be low-purity, contrasting favorably with the industrial standard, silicon solar cells, which require expensively-processed, high-purity silicon. This tolerance to defects is partially due to the nanostructured design of some PSCs and all QDSSCs, in which a nanostructured bulk heterojunction is formed between the electron-transport material, the absorber, and the hole-transport material. However, the high interfacial areas involved in such designs leads to high rates of interfacial recombination, causing losses in photocurrent, and limiting device efficiency. In this work, I will present methods to reduce interfacial recombination in these inorganic-absorber nanostructured solar cells though surface modifications. In QDSSCs, these include growing ultra-thin insulating metal oxide films by atomic layer deposition (ALD) at the interface and controlling of the nucleation and growth of the inorganic absorber. These studies provide insight into the working mechanisms of QDSSCs, through a combination of the highly-controlled nature of ALD, where films can be grown a single atomic layer at a time and an interface can be atomically engineered, X-ray absorption measurements of interfacial geometric and electronic structure, and detailed studies of the resulting solar cell performance. I will also detail the use of ALD to grow entire material layers in perovskites solar cells, both ALD TiO2 as the electron-transport material, and ALD NiOx as the hole-transport material. Despite their high efficiencies, PSCs are unstable and rapidly degrade when exposed to moisture or excessive heat. The use of ultra-conformal inorganic layers grown by ALD to cap the perovskites absorber, instead of the currently-employed organic layers, has the potential to improve the stability, and thus efficiency, of perovskites solar cells.

Book The Preparation of Nano Composites and Their Applications in Solar Energy Conversion

Download or read book The Preparation of Nano Composites and Their Applications in Solar Energy Conversion written by Nailiang Yang and published by Springer. This book was released on 2016-10-20 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book mainly focuses on the solar energy conversion with the nanomaterials. It describes the applications on two dimensional carbon nanomaterials: graphene and graphdiyne. Also, works on conductive polymer and bio-inspired material is included. The work described here is the first few reports on the applications of graphene, which becomes one of the hottest materials nowadays. This work also proves and studies the charge transfer between the semi-conductor and graphene interface, which is benefit to the applications in solar cells and photocatalysis. At the same time, method to synthesize and assemble the given nanomaterials (TiO2 nanosheets, gold nanoparticles, graphene, PS-PAA, PANI) is detailed, which is easier to the readers to repeat the experiments.

Book Design  Synthesis and Applications of One Dimensional Chalcogenide Hetero Nanostructures

Download or read book Design Synthesis and Applications of One Dimensional Chalcogenide Hetero Nanostructures written by Tao-Tao Zhuang and published by Springer. This book was released on 2018-04-07 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis focuses on the design and synthesis of novel one-dimensional colloidal chalcogenide hetero-nanostructures for enhancing solar energy conversion applications. Semiconducting nanomaterials are particular attractive for energy conversion due to the quantum confinement effects dictating their unique optical and electronic properties. Steering the photo-induced charge-flow based on unique bandgap alignment in semiconductor heterojunctions is critical for photo-electric/chemical conversion. The author presents the controllable preparation strategies to synthesize 1D chalcogenide hetero-nanostructures with various fine structures, further been used as excellent template materials for preparing other novel and complex hybrid architectures through a series of chemical transformations. The heterogeneous growth mechanisms of novel hetero-nanostructures is studied for developing a facile and general method to prepare more novel heterostructures. The band gap structure simulations, detailed charge carrier behaviour and unique solar energy conversion properties of the prepared hybrid nanostructures are deeply investigated. This work would open a new door to rationally designing hybrid systems for photo-induced applications.

Book Nanotechnology

    Book Details:
  • Author : Muhammad Bilal Tahir
  • Publisher : Springer Nature
  • Release : 2021-05-24
  • ISBN : 9811594376
  • Pages : 143 pages

Download or read book Nanotechnology written by Muhammad Bilal Tahir and published by Springer Nature. This book was released on 2021-05-24 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the basic and fundamental aspects of nanomaterials, its types, and classifications with respect to different factors. It contains methods of preparation and characterization of unique nanostructured materials. Consisting of six chapters, this book appeals to a wide readership from academia and industry professionals and is also useful to undergraduate and graduate students focusing on nanotechnology and nanomaterials, sustainable chemistry, energy conversion and storage, environmental protection, opto-electronics, sensors, and surface and interface science. It also appeals to readers who wish to know about the design of new types of materials with controlled nanostructures.

Book Nanostructures in Ferroelectric Films for Energy Applications

Download or read book Nanostructures in Ferroelectric Films for Energy Applications written by Jun Ouyang and published by Elsevier. This book was released on 2019-07-15 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanostructures in Ferroelectric Films for Energy Applications: Grains, Domains, Interfaces and the Engineering Methods presents methods of engineering nanostructures in ferroelectric films to improve their performance in energy harvesting and conversion and storage. Ferroelectric films, which have broad applications, including the emerging energy technology, usually consist of nanoscale inhomogeneities. For polycrystalline films, the size and distribution of nano-grains determines the macroscopic properties, especially the field-induced polarization response. For epitaxial films, the energy of internal long-range electric and elastic fields during their growth are minimized by formation of self-assembled nano-domains. This book is an accessible reference for both instructors in academia and R&D professionals. Provides the necessary components for the systematic study of the structure-property relationship in ferroelectric thin film materials using case studies in energy applications Written by leading experts in the research areas of piezoelectrics, electrocalorics, ferroelectric dielectrics (especially in capacitive energy storage), ferroelectric domains, and ferroelectric-Si technology Includes a well balanced mix of theoretical design and simulation, materials processing and integration, and dedicated characterization methods of the involved nanostructures

Book Nanofabrication and its Application in Renewable Energy

Download or read book Nanofabrication and its Application in Renewable Energy written by Gang Zhang and published by Royal Society of Chemistry. This book was released on 2014-03-20 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoscale materials and structures have attracted great attention in recent years because of their unique physical and chemical properties and potential use in energy transport and conversion. This book puts the subject into context by first looking at current synthesis methods for nanomaterials, from the bottom-up and top-down methods, followed by enhanced energy conversion efficiency at the nanoscale and then specific applications e.g. photovoltaic cells and nanogenerators. This authoritative and comprehensive book will be of interest to both the existing scientific community in this field, as well as for new people who wish to enter it.

Book Advanced Nanomaterials and Their Applications in Renewable Energy

Download or read book Advanced Nanomaterials and Their Applications in Renewable Energy written by Jingbo Louise Liu and published by Elsevier. This book was released on 2015-08-06 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Nanomaterials and Their Applications in Renewable Energy presents timely topics related to nanomaterials' feasible synthesis and characterization, and their application in the energy fields. In addition, the book provides insights and scientific discoveries in toxicity study, with information that is easily understood by a wide audience. Advanced energy materials are important in designing materials that have greater physical, electronic, and optical properties. This book emphasizes the fundamental physics and chemistry underlying the techniques used to develop solar and fuel cells with high charge densities and energy conversion efficiencies. New analytical techniques (synchronous X-ray) which probe the interactions of particles and radiation with matter are also explored, making this book an invaluable reference for practitioners and those interested in the science. - Provides a comprehensive review of solar energy, fuel cells, and gas storage from 2010 to the present - Reviews feasible synthesis and modern analytical techniques used in alternative energy - Explores examples of research in alternative energy, including current assessments of nanomaterials and safety - Contains a glossary of terms, units, and historical benchmarks - Presents a useful guide that will bring readers up to speed on historical developments in alternative fuel cells

Book Fundamentals of Solar Cell Design

Download or read book Fundamentals of Solar Cell Design written by Inamuddin and published by John Wiley & Sons. This book was released on 2021-08-24 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solar cells are semiconductor devices that convert light photons into electricity in photovoltaic energy conversion and can help to overcome the global energy crisis. Solar cells have many applications including remote area power systems, earth-orbiting satellites, wristwatches, water pumping, photodetectors and remote radiotelephones. Solar cell technology is economically feasible for commercial-scale power generation. While commercial solar cells exhibit good performance and stability, still researchers are looking at many ways to improve the performance and cost of solar cells via modulating the fundamental properties of semiconductors. Solar cell technology is the key to a clean energy future. Solar cells directly harvest energy from the sun’s light radiation into electricity are in an ever-growing demand for future global energy production. Solar cell-based energy harvesting has attracted worldwide attention for their notable features, such as cheap renewable technology, scalable, lightweight, flexibility, versatility, no greenhouse gas emission, environment, and economy friendly and operational costs are quite low compared to other forms of power generation. Thus, solar cell technology is at the forefront of renewable energy technologies which are used in telecommunications, power plants, small devices to satellites. Aiming at large-scale implementation can be manipulated by various types used in solar cell design and exploration of new materials towards improving performance and reducing cost. Therefore, in-depth knowledge about solar cell design is fundamental for those who wish to apply this knowledge and understanding in industries and academics. This book provides a comprehensive overview on solar cells and explores the history to evolution and present scenarios of solar cell design, classification, properties, various semiconductor materials, thin films, wafer-scale, transparent solar cells, and so on. It also includes solar cells’ characterization analytical tools, theoretical modeling, practices to enhance conversion efficiencies, applications and patents.