EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Nanoscale Structure and Assembly at Solid Fluid Interfaces

Download or read book Nanoscale Structure and Assembly at Solid Fluid Interfaces written by Xiang Yang Liu and published by . This book was released on with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nanoscale structure and assembly at solid fluid interfaces

Download or read book Nanoscale structure and assembly at solid fluid interfaces written by Xiang Yang Liu and published by Springer Science & Business Media. This book was released on 2004 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: All of us have read about the vast potential inherent in nanotechnology and the exciting impact it has had in changing our lifestyle in the 21st century. One of the basic issues confronting us is how to fabricate devices or materials on the nano scale. What is the basic physics governing the formation of nano phases? How can biological systems inspire us to formulate nano scale architectures, in the way nature has always done and continues to do? These are two main areas of focus in this book. The aim of this reference is to take us to the root of these issues: the solid-fluid interfacial structures and the basic interactions between structural units that determine the kinetics of nano particles and assembly formation, and subsequently the resulting structures and functionalities of the nano phases and devices. By taking a fresh look at the novel nano structure engineering and surface probing technologies from a global viewpoint of fundamental principles, the two volumes of this book direct our focus from the macroscopic phase to the nano structures ranging from inorganic to bio nano materials. Featuring contributions from a number of international experts in the related fields, this book offers a comprehensive and synergistic look into these challenging issues in terms of theoretical modeling, computer simulations, advanced surface probing and fabrication and interface characterizations. The book also provides a link to the nanostructure engineering of some novel materials playing an important role in advancing technologies in this field.

Book Nanoscale structure and assembly at solid fluid interfaces

Download or read book Nanoscale structure and assembly at solid fluid interfaces written by Xiang Yang Liu and published by Springer Science & Business Media. This book was released on 2004 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nanoscale Structure and Assembly at Solid Fluid Interfaces

Download or read book Nanoscale Structure and Assembly at Solid Fluid Interfaces written by James J. De Yoreo and published by Springer. This book was released on 2014-09-12 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this reference is to take us to the root of these issues: the solid-fluid interfacial structures and the basic interactions between structural units that determine the kinetics of nano particles and assembly formation, and subsequently the resulting structures and functionalities of the nano phases and devices. By taking a fresh look at the novel nano structure engineering and surface probing technologies from a global viewpoint of fundamental principles, the two volumes of this book direct our focus from the macroscopic phase to the nano structures ranging from inorganic to bio nano materials. Featuring contributions from a number of international experts in the related fields, this book offers a comprehensive and synergistic look into these challenging issues in terms of theoretical modeling, computer simulations, advanced surface probing and fabrication and interface characterizations. The book also provides a link to the nanostructure engineering of some novel materials playing an important role in advancing technologies in this field.

Book Nanoscale Liquid Interfaces

Download or read book Nanoscale Liquid Interfaces written by Thierry Ondarçuhu and published by CRC Press. This book was released on 2013-04-17 with total page 782 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses the recent developments in the investigation and manipulation of liquids at the nanoscale. This new field has shown important breakthroughs on the basic understanding of physical mechanisms involving liquid interfaces, which led to applications in nanopatterning. It has also consequences in force microscopy imaging in liquid environment. The book proposes is a timely review of these various aspects. It is co-authored by 25 among the most prominent scientists in the field.

Book Introduction to Nanoscale Science and Technology

Download or read book Introduction to Nanoscale Science and Technology written by Massimiliano Ventra and published by Springer Science & Business Media. This book was released on 2006-04-11 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "...A class in nanoscale science and technology is daunting for the educator, who must organize a large collection of materials to cover the field, and for the student, who must absorb all the new concepts. This textbook is an excellent resource that allows students from any engineering background to quickly understand the foundations and exciting advances of the field. The example problems with answers and the long list of references in each chapter are a big plus for course tutors. The book is organized into seven sections. The first, nanoscale fabrication and characterization, covers nanolithography, self-assembly, and scanning probe microscopy. Of these, we enjoyed the section on nanolithography most, as it includes many interesting details from industrial manufacturing processes. The chapter on self-assembly also provides an excellent overview by introducing six types of intermolecular interactions and the ways these can be employed to fabricate nanostructures. The second section covers nanomaterials and nanostructures. Out of its 110 pages, 45 are devoted to carbon nanotubes. Fullerenes and quantum dots each have their own chapter that focuses on the properties and applications of these nanostructures. Nanolayer, nanowire, and nanoparticle composites of metals and semiconductors are briefly covered (just 12 pages), with slightly more discussion of specific applications. The section on nanoscale electronics begins with a history of microelectronics before discussing the difficulties in shrinking transistor size further. The discussion of problems (leakage current, hot electrons, doping fluctuations, etc.) and possible solutions (high- k dielectrics, double-gate devices) could easily motivate deeper discussions of nanoscale electrical transport. A chapter on molecular electronics considers transport through alkanes, molecular transistors, and DNA in a simple, qualitative manner we found highly instructive. Nanoscale magnetic systems are examined in the fourth section. The concept of quantum computation is nicely presented, although the discussion of how this can be achieved with controlled spin states is (perhaps necessarily) not clear. We found the chapter on magnetic storage to be one of the most lucid in the book. The giant magnetoresistive effect, operation of spin valves, and issues in magnetic scaling are easier to understand when placed in the context of the modern magnetic hard disk drive. Micro- and nanoelectromechanical systems are covered with an emphasis on the integration of sensing, computation, and communication. Here, the student can see advanced applications of lithography. The sixth section, nanoscale optoelectronics, describes quantum dots, organic optoelectronics, and photonic crystals. The chapter on organic optoelectronics is especially clear in its discussion of the fundamentals of this complicated field. The book concludes with an overview of nanobiotechnology that covers biomimetics, biomolecular motors, and nanofluidics. Because so many authors have contributed to this textbook, it suffers a bit from repetition. However, this also allows sections to be omitted without any adverse effect on student comprehension. We would have liked to see more technology to balance the science; apart from the chapters on lithography and magnetic storage, little more than an acknowledgment is given to commercial applications. Overall, this book serves as an excellent starting point for the study of nanoscale science and technology, and we recommend it to anyone with a modest scientific background. It is also a great vehicle to motivate the study of science at a time when interest is waning. Nanotechnology educators should look no further." (MATERIALS TODAY, June 2005)

Book Bioinspiration

    Book Details:
  • Author : Xiang Yang Liu
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-09
  • ISBN : 1461453720
  • Pages : 394 pages

Download or read book Bioinspiration written by Xiang Yang Liu and published by Springer Science & Business Media. This book was released on 2012-12-09 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Methods in bioinspiration and biomimicking have been around for a long time. However, due to current advances in modern physical, biological sciences, and technologies, our understanding of the methods have evolved to a new level. This is due not only to the identification of mysterious and fascinating phenomena but also to the understandings of the correlation between the structural factors and the performance based on the latest theoretical, modeling, and experimental technologies. Bioinspiration: From Nano to Micro Scale provides readers with a broad view of the frontiers of research in the area of bioinspiration from the nano to macroscopic scales, particularly in the areas of biomineralization, antifreeze protein, and antifreeze effect. It also covers such methods as the lotus effect and superhydrophobicity, structural colors in animal kingdom and beyond, as well as behavior in ion channels. A number of international experts in related fields have contributed to this book, which offers a comprehensive and synergistic look into challenging issues such as theoretical modeling, advanced surface probing, and fabrication. The book also provides a link to the engineering of novel advanced materials playing an important role in advancing technologies in various fields.

Book Environmental Surfaces and Interfaces from the Nanoscale to the Global Scale

Download or read book Environmental Surfaces and Interfaces from the Nanoscale to the Global Scale written by Patricia Maurice and published by John Wiley & Sons. This book was released on 2009-06-15 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: An advanced exploration ofwater-rock interactions Based on the author's fifteen years of teaching and tried-and-tested experiences in the classroom, here is a comprehensive exploration of water-rock interactions. Environmental Surfaces and Interfaces from the Nanoscale to the Global Scale covers aspects ranging from the theory of charged particle surfaces to how minerals grow and dissolve to new frontiers in W-R interactions such as nanoparticles, geomicrobiology, and climate change. Providing basic conceptual understanding along with more complex subject matter, Professor Patricia Maurice encourages students to look beyond the text to ongoing research in the field. Designed to engage the learner, the book features: Numerous case studies to contextualize concepts Practice and thought questions at the end of each chapter Broad coverage from basic theory to cutting-edge topics such as nanotechnology Both basic and applied science This text goes beyond W-R interactions to touch on a broad range of environmental disciplines. While written for advanced undergraduate and graduate students primarily in geochemistry and soil chemistry, Environmental Surfaces and Interfaces from the Nanoscale to the Global Scale will serve the needs of such diverse fields as environmental engineering, hydrogeology, physics, biology, and environmental chemistry.

Book Surface and Interface Science  Volumes 1 and 2

Download or read book Surface and Interface Science Volumes 1 and 2 written by Klaus Wandelt and published by John Wiley & Sons. This book was released on 2012-04-16 with total page 1010 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covering interface science from a novel surface science perspective, this unique handbook offers a comprehensive overview of this burgeoning field. Eight topical volumes cover basic concepts and methods, elemental and composite surfaces, solid-gas, solid-liquid and inorganic biological interfaces, as well as applications of surface science in nanotechnology, materials science and molecular electronics. With its broad scope and clear structure, it is ideal as a reference for scientists in the field, as well as an introduction for newcomers.

Book Handbook of Crystal Growth

Download or read book Handbook of Crystal Growth written by Tatau Nishinaga and published by Elsevier. This book was released on 2014-11-04 with total page 1216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume IAHandbook of Crystal Growth, 2nd Edition (Fundamentals: Thermodynamics and Kinetics) Volume IA addresses the present status of crystal growth science, and provides scientific tools for the following volumes: Volume II (Bulk Crystal Growth) and III (Thin Film Growth and Epitaxy). Volume IA highlights thermodynamics and kinetics. After historical introduction of the crystal growth, phase equilibria, defect thermodynamics, stoichiometry, and shape of crystal and structure of melt are described. Then, the most fundamental and basic aspects of crystal growth are presented, along with the theories of nucleation and growth kinetics. In addition, the simulations of crystal growth by Monte Carlo, ab initio-based approach and colloidal assembly are thoroughly investigated. Volume IBHandbook of Crystal Growth, 2nd Edition (Fundamentals: Transport and Stability) Volume IB discusses pattern formation, a typical problem in crystal growth. In addition, an introduction to morphological stability is given and the phase-field model is explained with comparison to experiments. The field of nanocrystal growth is rapidly expanding and here the growth from vapor is presented as an example. For the advancement of life science, the crystal growth of protein and other biological molecules is indispensable and biological crystallization in nature gives many hints for their crystal growth. Another subject discussed is pharmaceutical crystal growth. To understand the crystal growth, in situ observation is extremely powerful. The observation techniques are demonstrated. Volume IA Explores phase equilibria, defect thermodynamics of Si, stoichiometry of oxides and atomistic structure of melt and alloys Explains basic ideas to understand crystal growth, equilibrium shape of crystal, rough-smooth transition of step and surface, nucleation and growth mechanisms Focuses on simulation of crystal growth by classical Monte Carlo, ab-initio based quantum mechanical approach, kinetic Monte Carlo and phase field model. Controlled colloidal assembly is presented as an experimental model for crystal growth. Volume IIB Describes morphological stability theory and phase-field model and comparison to experiments of dendritic growth Presents nanocrystal growth in vapor as well as protein crystal growth and biological crystallization Interprets mass production of pharmaceutical crystals to be understood as ordinary crystal growth and explains crystallization of chiral molecules Demonstrates in situ observation of crystal growth in vapor, solution and melt on the ground and in space

Book Computational Methods for Nanoscale Applications

Download or read book Computational Methods for Nanoscale Applications written by Igor Tsukerman and published by Springer Science & Business Media. This book was released on 2007-12-24 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: Positioning itself at the common boundaries of several disciplines, this work provides new perspectives on modern nanoscale problems where fundamental science meets technology and computer modeling. In addition to well-known computational techniques such as finite-difference schemes and Ewald summation, the book presents a new finite-difference calculus of Flexible Local Approximation Methods (FLAME) that qualitatively improves the numerical accuracy in a variety of problems.

Book Nanoscale Ordering at the Liquid solid Interface Using Self assembly Principles

Download or read book Nanoscale Ordering at the Liquid solid Interface Using Self assembly Principles written by Lorenz Kampschulte and published by . This book was released on 2006 with total page 91 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Effect of Nanoscale Structure on Interfacial Energy

Download or read book The Effect of Nanoscale Structure on Interfacial Energy written by Jeffrey James Kuna and published by . This book was released on 2011 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: Interfaces are ubiquitous in nature. From solidification fronts to the surfaces of biological cells, interfacial properties determine the interactions between a solid and a liquid. Interfaces, specifically liquid-solid interfaces, play important roles in many fields of science. In the field of biology, interfaces are fundamental in determining cell-cell interactions, protein folding behavior and assembly, and ligand binding. In chemistry, heterogeneous catalysts greatly increase reaction rates of reactions occurring at the interface. In materials science, crystallization and the resulting crystal habit are determined by interfacial properties, and interfaces affect diffusion through polycrystalline materials. In nanotechnology, much work on self-assembly, molecular recognition, catalysis, electrochemistry and numerous other applications depends on the properties of interfaces. The structure and properties of interfaces have been studied experimentally using a variety of techniques including various forms of microscopy, wetting measurements, and scattering techniques. Conventionally, the typical interface considered was highly homogeneous and exhibited a uniform composition and roughness. In contrast, many of the interfaces encountered in biological or nanotechnological systems have surfaces with a greater degree of complexity. While the surface may be compositionally homogeneous over a large area, these surfaces are structured and have a complex surface topology. On a mixed interface, several different chemical groups may be present on the surface, and the chemical composition can vary on a sub-nanometer length scale. Structured systems are inherently difficult to experimentally measure. Most techniques available to characterize interfaces average properties over the entire surface and are not sensitive to nanoscale variations. Furthermore, many of these techniques are incapable of distinguishing global, surface-dependent properties from artifactual influences. Many surface characterization techniques require a large, flat, smooth surface. Preparation of mixed interfaces is an experimental challenge as well as many mixed interfaces with nanoscale structure are present on objects that are themselves nanoscale, such as proteins. Several technological hurdles exist that limit the ability to produce nanoscale mixed interfaces large enough for conventional measurements. In this thesis, the effect of surface structure on wetting behavior was investigated. Interfaces can be characterized by the energy required to form them, a quantity called interfacial energy. Models have been developed to describe the interfacial energy of mixed interfaces for a wide range of surfaces. These models only account for the composition of the surface. The wetting behavior of mixed surfaces has also been related to artifact-dependent wetting effects (namely the effect of a boundary or asperity). No attempt has been made to incorporate surface structure into a global expression of interfacial energy. This thesis will study how the structure of an interface determines the resulting interfacial energy. Surfaces prepared with chemical domains of different length scales demonstrate and interfacial energy trend with significant deviation from the current best model. Specifically, the observed trend is non-linear, unlike the conventional model, and furthermore in some cases, is non-monotonic. These deviations are shown to stem from the surfaces' intrinsic structure and are not an artifact of the measurement process or surface defects. The deviations from the predicted trend are explained by the molecular scale structure of the solvent. The two proposed mechanisms, cavitation and confinement, arise when surface features are smaller than a solvent-dependent length. With cavitation, nonwetting surface features below a size threshold are more wetting than would be expected. With confinement, wetting patches become less wetting as their dimensions are decreased. Molecular dynamics simulations support the proposed mechanisms. Additional experimental results provide further experimental evidence of the proposed molecular-scale wetting phenomena.

Book Nanoelectronics and Photonics

Download or read book Nanoelectronics and Photonics written by Anatoli Korkin and published by Springer Science & Business Media. This book was released on 2008-09-23 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoelectronics and Photonics provides a fundamental description of the core elements and problems of advanced and future information technology. The authoritative book collects a series of tutorial chapters from leaders in the field covering fundamental topics from materials to devices and system architecture, and bridges the fundamental laws of physics and chemistry of materials at the atomic scale with device and circuit design and performance requirements.

Book Nanomedicine and Nanobiotechnology

Download or read book Nanomedicine and Nanobiotechnology written by Stergios Logothetidis and published by Springer Science & Business Media. This book was released on 2012-01-15 with total page 149 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the laboratory, scientific and clinical aspects of nanomaterials used for medical applications in the fields of regenerative medicine, dentistry and pharmacy. It gives a broad overview on the in vitro compatibility assessment of nanostructured materials implemented in the medical field by the combination of classical biological protocols and advanced non-destructive nano-precision techniques with special emphasis on the topographical, surface energy, optical and electrical properties. Materials in the physical form of nanoparticles, nanotubes, and thin films are addressed in terms of their toxicity. The different pillars of the Nanomedicine field are also highlighted. The book takes an interdisciplinary approach of medicine, biology, pharmacy, physics, chemistry, engineering, nanotechnology and materials science. The international group of authors specifically chosen for their distinguished expertise belong to the academic and industrial world in order to provide a broader perspective. It appeals to researchers and graduate students.

Book Scanning Probe Microscopy of Soft Matter

Download or read book Scanning Probe Microscopy of Soft Matter written by Vladimir V. Tsukruk and published by John Wiley & Sons. This book was released on 2012-01-09 with total page 663 pages. Available in PDF, EPUB and Kindle. Book excerpt: Well-structured and adopting a pedagogical approach, this self-contained monograph covers the fundamentals of scanning probe microscopy, showing how to use the techniques for investigating physical and chemical properties on the nanoscale and how they can be used for a wide range of soft materials. It concludes with a section on the latest techniques in nanomanipulation and patterning. This first book to focus on the applications is a must-have for both newcomers and established researchers using scanning probe microscopy in soft matter research. From the contents: * Atomic Force Microscopy and Other Advanced Imaging Modes * Probing of Mechanical, Thermal Chemical and Electrical Properties * Amorphous, Poorly Ordered and Organized Polymeric Materials * Langmuir-Blodgett and Layer-by-Layer Structures * Multi-Component Polymer Systems and Fibers * Colloids and Microcapsules * Biomaterials and Biological Structures * Nanolithography with Intrusive AFM Tipand Dip-Pen Nanolithography * Microcantilever-Based Sensors

Book Biomineralization Sourcebook

Download or read book Biomineralization Sourcebook written by Elaine DiMasi and published by CRC Press. This book was released on 2014-02-25 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: What does it mean to be at the forefront of a characterization technique? Novel implementation and research, finding new ways to visualize composites, and new techniques all play a role. Yet with the myriad of advances in the field, keeping up with new and advanced techniques, often from many different areas, has become a challenge. Biomineralizati