EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Nanoscale Field Effect Transistors  Emerging Applications

Download or read book Nanoscale Field Effect Transistors Emerging Applications written by Ekta Goel, Archana Pandey and published by Bentham Science Publishers. This book was released on 2023-12-20 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoscale Field Effect Transistors: Emerging Applications is a comprehensive guide to understanding, simulating, and applying nanotechnology for design and development of specialized transistors. This book provides in-depth information on the modeling, simulation, characterization, and fabrication of semiconductor FET transistors. The book contents are structured into chapters that explain concepts with simple language and scientific references. The core of the book revolves around the fundamental physics that underlie the design of solid-state nanostructures and the optimization of these nanoscale devices for real-time applications. Readers will learn how to achieve superior performance in terms of reduced size and weight, enhanced subthreshold characteristics, improved switching efficiency, and minimal power consumption. Key Features: Quick summaries: Each chapter provides an introduction and summary to explain concepts in a concise manner. In-Depth Analysis: This book provides an extensive exploration of the theory and practice of nanoscale materials and devices, offering a detailed understanding of the technical aspects of Nano electronic FET transistors. Multidisciplinary Approach: It discusses various aspects of nanoscale materials and devices for applications such as quantum computation, biomedical applications, energy generation and storage, environmental protection, and more. It showcases how nanoscale FET devices are reshaping multiple industries. References: Chapters include references that encourage advanced readers to further explore key topics. Designed for a diverse audience, this book caters to students, academics and advanced readers interested in learning about Nano FET devices. Readership Students, academics and advanced readers

Book Nanowire Field Effect Transistors  Principles and Applications

Download or read book Nanowire Field Effect Transistors Principles and Applications written by Dae Mann Kim and published by Springer Science & Business Media. This book was released on 2013-10-23 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: “Nanowire Field Effect Transistor: Basic Principles and Applications” places an emphasis on the application aspects of nanowire field effect transistors (NWFET). Device physics and electronics are discussed in a compact manner, together with the p-n junction diode and MOSFET, the former as an essential element in NWFET and the latter as a general background of the FET. During this discussion, the photo-diode, solar cell, LED, LD, DRAM, flash EEPROM and sensors are highlighted to pave the way for similar applications of NWFET. Modeling is discussed in close analogy and comparison with MOSFETs. Contributors focus on processing, electrostatic discharge (ESD) and application of NWFET. This includes coverage of solar and memory cells, biological and chemical sensors, displays and atomic scale light emitting diodes. Appropriate for scientists and engineers interested in acquiring a working knowledge of NWFET as well as graduate students specializing in this subject.

Book Fundamentals of Nanoscaled Field Effect Transistors

Download or read book Fundamentals of Nanoscaled Field Effect Transistors written by Amit Chaudhry and published by Springer Science & Business Media. This book was released on 2013-04-23 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of Nanoscaled Field Effect Transistors gives comprehensive coverage of the fundamental physical principles and theory behind nanoscale transistors. The specific issues that arise for nanoscale MOSFETs, such as quantum mechanical tunneling and inversion layer quantization, are fully explored. The solutions to these issues, such as high-κ technology, strained-Si technology, alternate devices structures and graphene technology are also given. Some case studies regarding the above issues and solution are also given in the book.

Book Emerging Nanoelectronic Devices

Download or read book Emerging Nanoelectronic Devices written by An Chen and published by John Wiley & Sons. This book was released on 2015-01-27 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emerging Nanoelectronic Devices focuses on the future direction of semiconductor and emerging nanoscale device technology. As the dimensional scaling of CMOS approaches its limits, alternate information processing devices and microarchitectures are being explored to sustain increasing functionality at decreasing cost into the indefinite future. This is driving new paradigms of information processing enabled by innovative new devices, circuits, and architectures, necessary to support an increasingly interconnected world through a rapidly evolving internet. This original title provides a fresh perspective on emerging research devices in 26 up to date chapters written by the leading researchers in their respective areas. It supplements and extends the work performed by the Emerging Research Devices working group of the International Technology Roadmap for Semiconductors (ITRS). Key features: • Serves as an authoritative tutorial on innovative devices and architectures that populate the dynamic world of “Beyond CMOS” technologies. • Provides a realistic assessment of the strengths, weaknesses and key unknowns associated with each technology. • Suggests guidelines for the directions of future development of each technology. • Emphasizes physical concepts over mathematical development. • Provides an essential resource for students, researchers and practicing engineers.

Book Major Applications of Carbon Nanotube Field Effect Transistors  CNTFET

Download or read book Major Applications of Carbon Nanotube Field Effect Transistors CNTFET written by Raj, Balwinder and published by IGI Global. This book was released on 2019-12-06 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: With recent advancements in electronics, specifically nanoscale devices, new technologies are being implemented to improve the properties of automated systems. However, conventional materials are failing due to limited mobility, high leakage currents, and power dissipation. To mitigate these challenges, alternative resources are required to advance electronics further into the nanoscale domain. Carbon nanotube field-effect transistors are a potential solution yet lack the information and research to be properly utilized. Major Applications of Carbon Nanotube Field-Effect Transistors (CNTFET) is a collection of innovative research on the methods and applications of converting semiconductor devices from micron technology to nanotechnology. The book provides readers with an updated status on existing CNTs, CNTFETs, and their applications and examines practical applications to minimize short channel effects and power dissipation in nanoscale devices and circuits. While highlighting topics including interconnects, digital circuits, and single-wall CNTs, this book is ideally designed for electrical engineers, electronics engineers, students, researchers, academicians, industry professionals, and practitioners working in nanoscience, nanotechnology, applied physics, and electrical and electronics engineering.

Book Simulation and Modeling of Emerging Devices

Download or read book Simulation and Modeling of Emerging Devices written by Brinda Bhowmick and published by . This book was released on 2023-07 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the physical principles, modelling, fabrication and applications of Tunnel Field Effect Transistors (TFETs) and Fin Field Effect Transistors (FinFETs). This is intended to act as a reference for undergraduate, postgraduate and research scholars belonging to backgrounds of Applied Physics, Electrical and Electronics Engineering and Material Science. Of paramount importance is the need to understand the simulation aspects of these devices, the validity of mathematical models, basics on fabrication and details of applications of these nanoscale devices. The presentation of the book assumes that the reader has fundamental concepts of semiconductor device physics and electronic circuits. A course such as the one this book is intended to accompany and motivate both students and scholars to get involved in the research on TFETs and FinFETs. Further, this book can act as a reference for device engineers and scientists who need to get updated information on device and technological developments.

Book Carbon Nanotube Field Effect Transistor

Download or read book Carbon Nanotube Field Effect Transistor written by Fouad Sabry and published by One Billion Knowledgeable. This book was released on 2022-07-10 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: What Is Carbon Nanotube Field Effect Transistor A carbon nanotube field-effect transistor, also known as a CNTFET, is a kind of field-effect transistor that makes use of a single carbon nanotube or an array of carbon nanotubes as the channel material in place of bulk silicon, as is done in the conventional MOSFET construction. Since they were first exhibited in 1998, there have been significant advancements in CNTFET technology. How You Will Benefit (I) Insights, and validations about the following topics: Chapter 1: Carbon nanotube field-effect transistor Chapter 2: Carbon nanotube Chapter 3: JFET Chapter 4: Schottky barrier Chapter 5: Electron mobility Chapter 6: Nanoelectromechanical systems Chapter 7: Threshold voltage Chapter 8: Organic field-effect transistor Chapter 9: Ballistic conduction Chapter 10: Hybrid solar cell Chapter 11: Potential applications of carbon nanotubes Chapter 12: Carbon nanotubes in photovoltaics Chapter 13: Optical properties of carbon nanotubes Chapter 14: Carbon nanotube nanomotor Chapter 15: NanoIntegris Chapter 16: Ballistic conduction in single-walled carbon nanotubes Chapter 17: Tunnel field-effect transistor Chapter 18: Field-effect transistor Chapter 19: Carbon nanotubes in interconnects Chapter 20: Synthesis of carbon nanotubes Chapter 21: Vertically aligned carbon nanotube arrays (II) Answering the public top questions about carbon nanotube field effect transistor. (III) Real world examples for the usage of carbon nanotube field effect transistor in many fields. (IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of carbon nanotube field effect transistor' technologies. Who This Book Is For Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of carbon nanotube field effect transistor.

Book Carbon Based Electronics

    Book Details:
  • Author : Ashok Srivastava
  • Publisher : Pan Stanford
  • Release : 2015-03-19
  • ISBN : 9789814613101
  • Pages : 0 pages

Download or read book Carbon Based Electronics written by Ashok Srivastava and published by Pan Stanford. This book was released on 2015-03-19 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discovery of one-dimensional material carbon nanotubes in 1991 by the Japanese physicist Dr. Sumio Iijima has resulted in voluminous research in the field of carbon nanotubes for numerous applications, including possible replacement of silicon used in the fabrication of CMOS chips. One interesting feature of carbon nanotubes is that these can be metallic or semiconducting with a bandgap depending on their diameter. In search of non-classical devices and related technologies, both carbon nanotube-based field-effect transistors and metallic carbon nanotube interconnects are being explored extensively for emerging logic devices and very large-scale integration. Although various models for carbon nanotube-based transistors and interconnects have been proposed in the literature, an integrated approach to make them compatible with the present simulators is yet to be achieved. This book makes an attempt in this direction for the carbon-based electronics through fundamentals of solid-state physics and devices.

Book Nanoscale Transistors

Download or read book Nanoscale Transistors written by Mark Lundstrom and published by Springer Science & Business Media. This book was released on 2006-06-18 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: To push MOSFETs to their scaling limits and to explore devices that may complement or even replace them at molecular scale, a clear understanding of device physics at nanometer scale is necessary. Nanoscale Transistors provides a description on the recent development of theory, modeling, and simulation of nanotransistors for electrical engineers, physicists, and chemists working on nanoscale devices. Simple physical pictures and semi-analytical models, which were validated by detailed numerical simulations, are provided for both evolutionary and revolutionary nanotransistors. After basic concepts are reviewed, the text summarizes the essentials of traditional semiconductor devices, digital circuits, and systems to supply a baseline against which new devices can be assessed. A nontraditional view of the MOSFET using concepts that are valid at nanoscale is developed and then applied to nanotube FET as an example of how to extend the concepts to revolutionary nanotransistors. This practical guide then explore the limits of devices by discussing conduction in single molecules

Book Advanced Field Effect Transistors

Download or read book Advanced Field Effect Transistors written by Dharmendra Singh Yadav and published by CRC Press. This book was released on 2023-12-22 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Field-Effect Transistors: Theory and Applications offers a fresh perspective on the design and analysis of advanced field-effect transistor (FET) devices and their applications. The text emphasizes both fundamental and new paradigms that are essential for upcoming advancement in the field of transistors beyond complementary metal–oxide–semiconductors (CMOS). This book uses lucid, intuitive language to gradually increase the comprehension of readers about the key concepts of FETs, including their theory and applications. In order to improve readers’ learning opportunities, Advanced Field-Effect Transistors: Theory and Applications presents a wide range of crucial topics: Design and challenges in tunneling FETs Various modeling approaches for FETs Study of organic thin-film transistors Biosensing applications of FETs Implementation of memory and logic gates with FETs The advent of low-power semiconductor devices and related implications for upcoming technology nodes provide valuable insight into low-power devices and their applicability in wireless, biosensing, and circuit aspects. As a result, researchers are constantly looking for new semiconductor devices to meet consumer demand. This book gives more details about all aspects of the low-power technology, including ongoing and prospective circumstances with fundamentals of FET devices as well as sophisticated low-power applications.

Book Nanoscale Sensors

Download or read book Nanoscale Sensors written by Shibin Li and published by Springer Science & Business Media. This book was released on 2014-01-07 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a comprehensive introduction to nanoscale materials for sensor applications, with a focus on connecting the fundamental laws of physics and the chemistry of materials with device design. Nanoscale sensors can be used for a wide variety of applications, including the detection of gases, optical signals, and mechanical strain, and can meet the need to detect and quantify the presence of gaseous pollutants or other dangerous substances in the environment. Gas sensors have found various applications in our daily lives and in industry. Semiconductive oxides, including SnO2, ZnO, Fe2O3, and In2O3, are promising candidates for gas sensor applications. Carbon nanomaterials are becoming increasingly available as “off-the-shelf” components, and this makes nanotechnology more exciting and approachable than ever before. Nano-wire based field- effect transistor biosensors have also received much attention in recent years as a way to achieve ultra-sensitive and label-free sensing of molecules of biological interest. A diverse array of semiconductor-based nanostructures has been synthesized for use as a photoelectrochemical sensor or biosensor in the detection of low concentrations of analytes. A novel acoustic sensor for structural health monitoring (SHM) that utilizes lead zirconate titanate (PZT) nano- active fiber composites (NAFCs) is described as well.

Book Advanced Nanoscale MOSFET Architectures

Download or read book Advanced Nanoscale MOSFET Architectures written by Kalyan Biswas and published by John Wiley & Sons. This book was released on 2024-05-29 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive reference on the fundamental principles and basic physics dictating metal–oxide–semiconductor field-effect transistor (MOSFET) operation Advanced Nanoscale MOSFET Architectures provides an in-depth review of modern metal–oxide–semiconductor field-effect transistor (MOSFET) device technologies and advancements, with information on their operation, various architectures, fabrication, materials, modeling and simulation methods, circuit applications, and other aspects related to nanoscale MOSFET technology. The text begins with an introduction to the foundational technology before moving on to describe challenges associated with the scaling of nanoscale devices. Other topics covered include device physics and operation, strain engineering for highly scaled MOSFETs, tunnel FET, graphene based field effect transistors, and more. The text also compares silicon bulk and devices, nanosheet transistors and introduces low-power circuit design using advanced MOSFETs. Additional topics covered include: High-k gate dielectrics and metal gate electrodes for multi-gate MOSFETs, covering gate stack processing and metal gate modification Strain engineering in 3D complementary metal-oxide semiconductors (CMOS) and its scaling impact, and strain engineering in silicon–germanium (SiGe) FinFET and its challenges and future perspectives TCAD simulation of multi-gate MOSFET, covering model calibration and device performance for analog and RF applications Description of the design of an analog amplifier circuit using digital CMOS technology of SCL for ultra-low power VLSI applications Advanced Nanoscale MOSFET Architectures helps readers understand device physics and design of new structures and material compositions, making it an important resource for the researchers and professionals who are carrying out research in the field, along with students in related programs of study.

Book Simulation and Modeling of Emerging Devices

Download or read book Simulation and Modeling of Emerging Devices written by Brinda Bhowmick and published by Cambridge Scholars Publishing. This book was released on 2023-05-10 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the physical principles, modelling, fabrication and applications of Tunnel Field Effect Transistors (TFETs) and Fin Field Effect Transistors (FinFETs). This is intended to act as a reference for undergraduate, postgraduate and research scholars belonging to backgrounds of Applied Physics, Electrical and Electronics Engineering and Material Science. Of paramount importance is the need to understand the simulation aspects of these devices, the validity of mathematical models, basics on fabrication and details of applications of these nanoscale devices. The presentation of the book assumes that the reader has fundamental concepts of semiconductor device physics and electronic circuits. A course such as the one this book is intended to accompany and motivate both students and scholars to get involved in the research on TFETs and FinFETs. Further, this book can act as a reference for device engineers and scientists who need to get updated information on device and technological developments.

Book Nanoscale Silicon Devices

Download or read book Nanoscale Silicon Devices written by Shunri Oda and published by CRC Press. This book was released on 2018-09-03 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Is Bigger Always Better? Explore the Behavior of Very Small Devices as Described by Quantum Mechanics Smaller is better when it comes to the semiconductor transistor. Nanoscale Silicon Devices examines the growth of semiconductor device miniaturization and related advances in material, device, circuit, and system design, and highlights the use of device scaling within the semiconductor industry. Device scaling, the practice of continuously scaling down the size of metal-oxide-semiconductor field-effect transistors (MOSFETs), has significantly improved the performance of small computers, mobile phones, and similar devices. The practice has resulted in smaller delay time and higher device density in a chip without an increase in power consumption. This book covers recent advancements and considers the future prospects of nanoscale silicon (Si) devices. It provides an introduction to new concepts (including variability in scaled MOSFETs, thermal effects, spintronics-based nonvolatile computing systems, spin-based qubits, magnetoelectric devices, NEMS devices, tunnel FETs, dopant engineering, and single-electron transfer), new materials (such as high-k dielectrics and germanium), and new device structures in three dimensions. It covers the fundamentals of such devices, describes the physics and modeling of these devices, and advocates further device scaling and minimization of energy consumption in future large-scale integrated circuits (VLSI). Additional coverage includes: Physics of nm scaled devices in terms of quantum mechanics Advanced 3D transistors: tri-gate structure and thermal effects Variability in scaled MOSFET Spintronics on Si platform NEMS devices for switching, memory, and sensor applications The concept of ballistic transport The present status of the transistor variability and more An indispensable resource, Nanoscale Silicon Devices serves device engineers and academic researchers (including graduate students) in the fields of electron devices, solid-state physics, and nanotechnology.

Book Handbook of Emerging Materials for Semiconductor Industry

Download or read book Handbook of Emerging Materials for Semiconductor Industry written by Young Suh Song and published by Springer Nature. This book was released on with total page 930 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Tunneling Field Effect Transistors

Download or read book Tunneling Field Effect Transistors written by T. S. Arun Samuel and published by CRC Press. This book was released on 2023-06-08 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book will give insight into emerging semiconductor devices from their applications in electronic circuits, which form the backbone of electronic equipment. It provides desired exposure to the ever-growing field of low-power electronic devices and their applications in nanoscale devices, memory design, and biosensing applications. Tunneling Field Effect Transistors: Design, Modeling and Applications brings researchers and engineers from various disciplines of the VLSI domain to together tackle the emerging challenges in the field of nanoelectronics and applications of advanced low-power devices. The book begins by discussing the challenges of conventional CMOS technology from the perspective of low-power applications, and it also reviews the basic science and developments of subthreshold swing technology and recent advancements in the field. The authors discuss the impact of semiconductor materials and architecture designs on TFET devices and the performance and usage of FET devices in various domains such as nanoelectronics, Memory Devices, and biosensing applications. They also cover a variety of FET devices, such as MOSFETs and TFETs, with various structures based on the tunneling transport phenomenon. The contents of the book have been designed and arranged in such a way that Electrical Engineering students, researchers in the field of nanodevices and device-circuit codesign, as well as industry professionals working in the domain of semiconductor devices, will find the material useful and easy to follow.