Download or read book Nanoscale Assembly and Fabrication by Electrokinetics written by Wen Jung Li and published by William Andrew. This book was released on 2015-01-05 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The ability to move, manipulate and precisely assemble nanoscale materials is key to further advances in nanotechnology, especially nanoscale manufacturing, fabrication of sensors, electronics components etc. Electrokinetics is a key technique for achieving these ends, an is already widely used in MEMS and nanotechnology applications. This book provides a thorough overview of electrokinetics, focusing on both theoretical and experimental aspects of this important technique. Wen Li shows how to use electric field concepts to assemble nanoscale systems (i.e. systems on the scale of molecules). The use of field forces, as in electrokinetics, offers the level of precision required to manipulate and assemble large arrays of similar structures at the nano-scale. Electrokinetics is also put into a broader context by the author's wider examination of nanoscale systems, including an explanation of how competing forces and interactions operate at the molecular scale. Wen Li's book will enable readers to develop the ability to systematically design nano-sensing platforms and nano-manufacturing systems in a range of applications for areas including healthcare, precision engineering, lubrication, cell manipulation and the analysis of biological samples. Build a fundamental understanding of how to rapidly manipulate and assemble nanoscale entities using electrokinetics. Gain knowledge of the engineering methods available for parallel nanoscale manipulation, assembly, and manufacturing. Develop the ability to systematically design nano-sensing platforms and nano-manufacturing systems.
Download or read book Micromechanics and Nanoscale Effects written by Vasyl Michael Harik and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume consists of the state-of-the-art reports on new developments in micromechanics and the modeling of nanoscale effects, and is a companion book to the recent Kluwer volume on nanomechanics and mul- scale modeling (it is entitled Trends in Nanoscale Mechanics). The two volumes grew out of a series of discussions held at NASA Langley Research Center (LaRC), lectures and other events shared by many researchers from the national research laboratories and academia. The key events include the 2001 Summer Series of Round-Table Discussions on Nanotechnology at ICASE Institute (NASA LaRC) organized by Drs. V. M. Harik and M. D. Salas and the 2002 NASA LaRC Workshop on Multi-scale Modeling. The goal of these interactions was to foster collaborations between academic researchers and the ICASE Institute (NASA LaRC), a universi- based institute, which has pioneered world-class computational, theoretical and experimental research in the disciplines that are important to NASA. Editors gratefully acknowledge help of Ms. E. Todd (ICASE, NASA LaRC), the ICASE Director M. D. Salas and all reviewers, in particular, Dr. B. Diskin (ICASE/NIA, NASA LaRC), Prof. R. Haftka (University of Florida), Dr. V. M. Harik (ICASE/Swales Aerospace, NASA LaRC), Prof.
Download or read book Electrokinetic Remediation for Environmental Security and Sustainability written by Alexandra B. Ribeiro and published by John Wiley & Sons. This book was released on 2021-03-22 with total page 732 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electrokinetic Remediation for Environmental Security and Sustainability Explore this comprehensive reference on the remediation of contaminated substrates, filled with cutting-edge research and practical case studies Electrokinetic Remediation for Environmental Security and Sustainability delivers a thorough review of electrokinetic remediation (EKR) for the treatment of inorganic and organic contaminants in contaminated substrates. The book highlights recent progress and developments in EKR in the areas of resource recovery, the removal of pollutants, and environmental remediation. It also discusses the use of EKR in conjunction with nanotechnology and phytoremediation. Throughout the book, case studies are presented that involve the field implementation of EKR technologies. The book also includes discussions of enhanced electrokinetic remediation of dredged co-contaminated sediments, solar-powered bioelectrokinetics for the mitigation of contaminated agricultural soil, advanced electro-fenton for remediation of organics, electrokinetic remediation for PPCPs in contaminated substrates, and the electrokinetic remediation of agrochemicals such as organochlorine compounds. Other topics include: A thorough introduction to the modelling of electrokinetic remediation An exploration of the electrokinetic recovery of tungsten and removal of arsenic from mining secondary resources An analysis of pharmaceutically active compounds in wastewater treatment plants with a discussion of electrochemical advanced oxidation as an on-site treatment A review of rare earth elements, including general concepts and recovery techniques, like electrodialytic extraction A treatment of hydrocarbon-contaminated soil in cold climate conditions Perfect for environmental engineers and scientists, geologists, chemical engineers, biochemical engineers, and scientists working with green technology, Electrokinetic Remediation for Environmental Security and Sustainability will also earn a place in the libraries of academic and industry researchers, engineers, regulators, and policy makers with an interest in the remediation of contaminated natural resources.
Download or read book Electrokinetic Particle Transport in Micro Nanofluidics written by Shizhi Qian and published by CRC Press. This book was released on 2012-06-19 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerous applications of micro-/nanofluidics are related to particle transport in micro-/nanoscale channels, and electrokinetics has proved to be one of the most promising tools to manipulate particles in micro/nanofluidics. Therefore, a comprehensive understanding of electrokinetic particle transport in micro-/nanoscale channels is crucial to the development of micro-/nanofluidic devices. Electrokinetic Particle Transport in Micro-/Nanofluidics: Direct Numerical Simulation Analysis provides a fundamental understanding of electrokinetic particle transport in micro-/nanofluidics involving electrophoresis, dielectrophoresis, electroosmosis, and induced-charge electroosmosis. The book emphasizes the direct numerical simulation of electrokinetic particle transport phenomena, plus several supportive experimental studies. Using the commercial finite element package COMSOL Multiphysics®, it guides researchers on how to predict the particle transport subjected to electric fields in micro-/nanoscale channels. Researchers in the micro-/nanofluidics community, who may have limited experience in writing their own codes for numerical simulations, can extend the numerical models and codes presented in this book to their own research and guide the development of real micro-/nanofluidics devices. Corresponding COMSOL® script files are provided with the book and can be downloaded from the author’s website.
Download or read book Handbook of Nanoscience Engineering and Technology written by William A. Goddard III and published by CRC Press. This book was released on 2007-05-03 with total page 1080 pages. Available in PDF, EPUB and Kindle. Book excerpt: The ability to study and manipulate matter at the nanoscale is the defining feature of 21st-century science. The first edition of the standard-setting Handbook of Nanoscience, Engineering, and Technology saw the field through its infancy. Reassembling the preeminent team of leading scientists and researchers from all areas of nanoscience and nanote
Download or read book Micro and Nanomanipulation Tools written by Yu Sun and published by John Wiley & Sons. This book was released on 2015-08-24 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combining robotics with nanotechnology, this ready reference summarizes the fundamentals and emerging applications in this fascinating research field. This is the first book to introduce tools specifically designed and made for manipulating micro- and nanometer-sized objects, and presents such examples as semiconductor packaging and clinical diagnostics as well as surgery. The first part discusses various topics of on-chip and device-based micro- and nanomanipulation, including the use of acoustic, magnetic, optical or dielectrophoretic fields, while surface-driven and high-speed microfluidic manipulation for biophysical applications are also covered. In the second part of the book, the main focus is on microrobotic tools. Alongside magnetic micromanipulators, bacteria and untethered, chapters also discuss silicon nano- and integrated optical tweezers. The book closes with a number of chapters on nanomanipulation using AFM and nanocoils under optical and electron microscopes. Exciting images from the tiniest robotic systems at the nano-level are used to illustrate the examples throughout the work. A must-have book for readers with a background ranging from engineering to nanotechnology.
Download or read book The Nanobiotechnology Handbook written by Yubing Xie and published by CRC Press. This book was released on 2012-11-16 with total page 694 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thorough overview of nanobiotechnology and its place in advances in applied science and engineering, The Nanobiotechnology Handbook combines contributions from physics, bioorganic and bioinorganic chemistry, molecular and cellular biology, materials science, and medicine as well as from mechanical, electrical, chemical, and biomedical engineering to address the full scope of current and future developments. World-class experts discuss the role of nanobiotechnology in bioanalysis, biomolecular and biomedical nanotechnology, biosensors, biocatalysis and biofuel, and education and workforce development. It includes a companion CD that contains all figures in the book. The book begins with discussions of biomimetic nanotechnology, including a comprehensive overview of DNA nanostructure and DNA-inspired nanotechnology, aptamer-functionalized nanomaterials as artificial antibodies, artificial enzymes, molecular motors, and RNA structures and RNA-inspired nanotechnology. It shows how nanotechnology can be inspired by nature as well as adverse biological events in diagnostic and therapeutic development. From there, the chapters cover major important and widely used nanofabrication techniques, applications of nanotechnology for bioprocessing followed by coverage of the applications of atomic force microscopy (AFM), optical tweezers and nanofluidics as well as other nanotechnology-enabled biomolecular and cellular manipulation and detection. Focusing on major research trends, the book highlights the importance of nanobiotechnology to a range of medical applications such as stem cell technology and tissue engineering, drug development and delivery, imaging, diagnostics, and therapeutics. And with coverage of topics such as nanotoxicity, responsible nanotechnology, and educational and workforce development, it provides a unique overview and perspective of nanobiotechnology impacts from a researcher’s, entrepreneur’s, economist’s and educator’s point of view. It provides a resource for current applications and future development of nanobiotechnology.
Download or read book Introduction to Nanorobotic Manipulation and Assembly written by Ning Xi and published by Artech House. This book was released on 2012 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanotechnology will allow us to build devices smaller than previously thought possible and will bring fundamental changes to disciplines within engineering, chemistry, medicine, biology, and physics. Understanding the principles of nano manipulation and assembly is tremendously important for those aiming to develop nanoscale systems. This forward-looking resource offers you cutting-edge coverage of the fundamentals and latest applications in this burgeoning field from an engineering perspective. The book shows you how nano-manipulation allows for the detection and manipulation of tiny entities such as single molecules, nanotubes, nanocubes, cells, viruses, proteins, and DNA molecules. You discover the most promising nanorobotic manipulation and assembly methods and find clear examples of key application areas, including nano sensors, electronics, and biomedical engineering. Supported with over 100 illustrations, this groundbreaking volumes offers comprehensive coverage of the subject, from the physics of nano manipulation... to robotic assembly of nano devices. Moreover, you get a glimpse of the future direction of this revolutionary technological area.
Download or read book Nanoelectromechanics in Engineering and Biology written by Michael Pycraft Hughes and published by CRC Press. This book was released on 2018-10-03 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: The success, growth, and virtually limitless applications of nanotechnology depend upon our ability to manipulate nanoscale objects, which in turn depends upon developing new insights into the interactions of electric fields, nanoparticles, and the molecules that surround them. In the first book to unite and directly address particle electrokinetics and nanotechnology, Nanoelectromechanics in Engineering and Biology provides a thorough grounding in the phenomena associated with nanoscale particle manipulation. The author delivers a wealth of application and background knowledge, from using electric fields for particle sorting in lab-on-a-chip devices to electrode fabrication, electric field simulation, and computer analysis. It also explores how electromechanics can be applied to sorting DNA molecules, examining viruses, constructing electronic devices with carbon nanotubes, and actuating nanoscale electric motors. The field of nanotechnology is inherently multidisciplinary-in its principles, in its techniques, and in its applications-and meeting its current and future challenges will require the kind of approach reflected in this book. Unmatched in its scope, Nanoelectromechanics in Engineering and Biology offers an outstanding opportunity for people in all areas of research and technology to explore the use and precise manipulation of nanoscale structures.
Download or read book Multiscale Simulations and Mechanics of Biological Materials written by Shaofan Li and published by John Wiley & Sons. This book was released on 2013-03-19 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiscale Simulations and Mechanics of Biological Materials A compilation of recent developments in multiscale simulation and computational biomaterials written by leading specialists in the field Presenting the latest developments in multiscale mechanics and multiscale simulations, and offering a unique viewpoint on multiscale modelling of biological materials, this book outlines the latest developments in computational biological materials from atomistic and molecular scale simulation on DNA, proteins, and nano-particles, to meoscale soft matter modelling of cells, and to macroscale soft tissue and blood vessel, and bone simulations. Traditionally, computational biomaterials researchers come from biological chemistry and biomedical engineering, so this is probably the first edited book to present work from these talented computational mechanics researchers. The book has been written to honor Professor Wing Liu of Northwestern University, USA, who has made pioneering contributions in multiscale simulation and computational biomaterial in specific simulation of drag delivery at atomistic and molecular scale and computational cardiovascular fluid mechanics via immersed finite element method. Key features: Offers a unique interdisciplinary approach to multiscale biomaterial modelling aimed at both accessible introductory and advanced levels Presents a breadth of computational approaches for modelling biological materials across multiple length scales (molecular to whole-tissue scale), including solid and fluid based approaches A companion website for supplementary materials plus links to contributors’ websites (www.wiley.com/go/li/multiscale)
Download or read book Product Process Fingerprint in Micro Manufacturing written by Guido Tosello and published by MDPI. This book was released on 2019-05-31 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: The continuous miniaturization of products and the growing complexity of their embedded multifunctionalities necessitates continuous research and development efforts regarding micro components and related micro manufacturing technologies. Highly miniaturized systems, manufactured using a wide variety of materials, have found application in key technological fields, such as healthcare devices, micro implants, mobility, communications, optics, and micro electromechanical systems. Innovations required for the high-precision manufacturing of micro components can specifically be achieved through optimizations using post-process (i.e., offline) and in-process (i.e., online) metrology of both process input and output parameters, as well as geometrical features of the produced micro parts. However, it is of critical importance to reduce the metrology and optimization efforts, since process and product quality control can represent a significant portion of the total production time in micro manufacturing. To solve this fundamental challenge, research efforts have been undertaken in order to define, investigate, implement, and validate the so-called “product/process manufacturing fingerprint” concept. The “product manufacturing fingerprint” concept refers to those unique dimensional outcomes (e.g., surface topography, form error, critical dimensions, etc.) on the produced component that, if kept under control and within specifications, ensure that the entire micro component complies to its specifications. The “process manufacturing fingerprint” is a specific process parameter or feature to be monitored and controlled, in order to maintain the manufacture of products within the specified tolerances. By integrating both product and process manufacturing fingerprint concepts, the metrology and optimization efforts are highly reduced. Therefore, the quality of the micro products increases, with an obvious improvement in production yield. Accordingly, this Special Issue seeks to showcase research papers, short communications, and review articles that focus on novel methodological developments and applications in micro- and sub-micro-scale manufacturing, process monitoring and control, as well as micro and sub-micro product quality assurance. Focus will be on micro manufacturing process chains and their micro product/process fingerprint, towards full process optimization and zero-defect micro manufacturing.
Download or read book Nanoscience written by Victor M. Starov and published by CRC Press. This book was released on 2010-06-15 with total page 1257 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bringing together a prominent roster of 42 leading investigators and their teams, this volume details the wide range of theoretical and experimental knowledge that can be successfully applied for investigating nanosystems. The book provides researchers with a full examination of nano-disperse colloids, homogeneous and heterogeneous nano-structured materials (and their properties), and shelf-organization at the nano-scale. It explores non-linear lectrokinetic phenomena in nano-sized dispersions and nano-sized biological systems. It discusses application aspects of technological processes in great detail, offering scientists and engineers across all fields authoritative commentary on colloid and interface science operating at the nanoscale.
Download or read book Nanoelectromechanics in Engineering and Biology written by Michael Pycraft Hughes and published by CRC Press. This book was released on 2018-10-03 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: The success, growth, and virtually limitless applications of nanotechnology depend upon our ability to manipulate nanoscale objects, which in turn depends upon developing new insights into the interactions of electric fields, nanoparticles, and the molecules that surround them. In the first book to unite and directly address particle electrokinetics and nanotechnology, Nanoelectromechanics in Engineering and Biology provides a thorough grounding in the phenomena associated with nanoscale particle manipulation. The author delivers a wealth of application and background knowledge, from using electric fields for particle sorting in lab-on-a-chip devices to electrode fabrication, electric field simulation, and computer analysis. It also explores how electromechanics can be applied to sorting DNA molecules, examining viruses, constructing electronic devices with carbon nanotubes, and actuating nanoscale electric motors. The field of nanotechnology is inherently multidisciplinary-in its principles, in its techniques, and in its applications-and meeting its current and future challenges will require the kind of approach reflected in this book. Unmatched in its scope, Nanoelectromechanics in Engineering and Biology offers an outstanding opportunity for people in all areas of research and technology to explore the use and precise manipulation of nanoscale structures.
Download or read book Emerging Technologies for Nanoparticle Manufacturing written by Jayvadan K. Patel and published by Springer Nature. This book was released on 2021-06-23 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of nanoparticle production methods, scale-up issues drawing attention to industrial applicability, and addresses their successful applications for commercial use. There is a need for a reference book which will address various aspects of recent progress in the methods of development of nanoparticles with a focus on polymeric and lipid nanoparticles, their scale-up techniques, and challenges in their commercialization. There is no consolidated reference book that discusses the emerging technologies for nanoparticle manufacturing. This book focuses on the following major aspects of emerging technologies for nano particle manufacturing. I. Introduction and Biomedical Applications of Nanoparticles II. Polymeric Nanoparticles III. Lipid Nanoparticles IV. Metallic Nanoparticles V. Quality Control for Nanoparticles VI. Challenges in Scale-Up Production of Nanoparticles VII. Injectable Nanosystems VIII. Future Directions and Challenges Leading scientists are selected as chapter authors who have contributed significantly in this field and they focus more on emerging technologies for nanoparticle manufacturing, future directions, and challenges.
Download or read book Electrochemistry at the Nanoscale written by Patrik Schmuki and published by Springer Science & Business Media. This book was released on 2009-07-21 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: For centuries, electrochemistry has played a key role in technologically important areas such as electroplating or corrosion. In recent decades, electrochemical methods are receiving increasing attention in important strongly growing fields of science and technology such as nanosciences (nanoelectrochemistry) and life-sciences (organic and biological electrochemistry). Characterization, modification and understanding of various electrochemical interfaces or electrochemical processes at the nanoscale, has led to a huge increase of the scientific interest in electrochemical mechanisms as well as of application of electrochemical methods in novel technologies. This book presents exciting emerging scientific and technological aspects of the introduction of the nanodimension in electrochemical approaches are presented in 12 chapters/subchapters.
Download or read book Nanoscale Materials in Water Purification written by Sabu Thomas and published by Elsevier. This book was released on 2018-11-14 with total page 892 pages. Available in PDF, EPUB and Kindle. Book excerpt: Novel nanoscale materials are now an essential part of meeting the current and future needs for clean water, and are at the heart of the development of novel technologies to desalinate water. The unique properties of nanomaterials and their convergence with current treatment technologies present great opportunities to revolutionize water and wastewater treatment. Nanoscale Materials for Water Purification brings together sustainable solutions using novel nanomaterials to alleviate the physical effects of water scarcity. This book covers a wide range of nanomaterials, including noble metal nanoparticles, magnetic nanoparticles, dendrimers, bioactive nanoparticles, polysaccharidebased nanoparticles, nanocatalysts, and redox nanoparticles for water purification. Significant properties and characterization methods of nanomaterials such as surface morphology, mechanical properties, and adsorption capacities are also investigated - Explains how the unique properties of a range of nanomaterials makes them important water purification agents - Shows how the use of nanotechnology can help create cheaper, more reliable, less energy-intensive, more environmentally friendly water purification techniques - Includes case studies to show how nanotechnology has successfully been integrated into water purification system design
Download or read book FIB Nanostructures written by Zhiming M. Wang and published by Springer Science & Business Media. This book was released on 2014-01-04 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: FIB Nanostructures reviews a range of methods, including milling, etching, deposition, and implantation, applied to manipulate structures at the nanoscale. Focused Ion Beam (FIB) is an important tool for manipulating the structure of materials at the nanoscale, and substantially extends the range of possible applications of nanofabrication. FIB techniques are widely used in the semiconductor industry and in materials research for deposition and ablation, including the fabrication of nanostructures such as nanowires, nanotubes, nanoneedles, graphene sheets, quantum dots, etc. The main objective of this book is to create a platform for knowledge sharing and dissemination of the latest advances in novel areas of FIB for nanostructures and related materials and devices, and to provide a comprehensive introduction to the field and directions for further research. Chapters written by leading scientists throughout the world create a fundamental bridge between focused ion beam and nanotechnology that is intended to stimulate readers' interest in developing new types of nanostructures for application to semiconductor technology. These applications are increasingly important for the future development of materials science, energy technology, and electronic devices. The book can be recommended for physics, electrical engineering, and materials science departments as a reference on materials science and device design.