EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Nanoporous Materials for Gas Storage

Download or read book Nanoporous Materials for Gas Storage written by Katsumi Kaneko and published by Springer. This book was released on 2019-04-27 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book shows the promising future and essential issues on the storage of the supercritical gases, including hydrogen, methane and carbon dioxide, by adsorption with controlling the gas-solid interaction by use of designed nanoporous materials. It explains the reason why the storage of these gases with adsorption is difficult from the fundamentals in terms of gas-solid interaction. It consists of 14 chapters which describe fundamentals, application, key nanoporous materials (nanoporous carbon, metal organic frame works, zeolites) and their storage performance for hydrogen, methane, and carbon dioxide. Thus, this book appeals to a wide readership of the academic and industrial researchers and it can also be used in the classroom for graduate students focusing on clean energy technology, green chemistry, energy conversion and storage, chemical engineering, nanomaterials science and technology, surface and interface science, adsorption science and technology, carbon science and technology, metal organic framework science, zeolite science, nanoporous materials science, nanotechnology, environmental protection, and gas sensors.

Book Computation Assisted Discovery of Nanoporous Materials for Gas Storage and Separations

Download or read book Computation Assisted Discovery of Nanoporous Materials for Gas Storage and Separations written by Cory Simon and published by . This book was released on 2016 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoporous materials, such as metal-organic frameworks (MOFs), have enormous internal surface areas. Their consequent adsorption properties demonstrate promise towards solving energy-related problems in gas storage and gas separations. Owing to their modular and versatile chemistry, millions of possible nanoporous materials can be synthesized. This vast chemical space allows a material to be tailor-made or fine-tuned to target specific adsorbate molecules and conditions. In this thesis, we utilize molecular models and simulations of gas adsorption in both existing and predicted nanoporous material structures to accelerate the discovery of new materials targeted for gas storage and separations at specific conditions. In the first part of this work, we approach the problem of identifying an optimal porous material to densify natural gas for storage onboard vehicles as fuel. We developed a series of statistical mechanical models to find the thermodynamic parameters that optimize the deliverable capacity of a material. We conclude that the heat of adsorption, which is a commonly used metric to evaluate materials for natural gas storage, is a misleading metric because the optimal heat of adsorption depends on the pore size. Our models also reveal that adsorbate-adsorbate attractions-- in the case where multiple methane molecules can fit into a pore-- can enhance the deliverable capacity. Next, we carried out a high-throughput computational screening of metal-organic frameworks, porous polymer networks, zeolites, and zeolitic imidazolate frameworks for natural gas storage. The data that we collected provide candidate structures for synthesis, reveal relationships between structural characteristics and performance, and suggest that it may be difficult to reach the current Advanced Research Project Agency-Energy (ARPA-E) deliverable capacity target. To assess thermodynamic limits to the methane deliverable capacity, we then built a model of an extreme scenario where an energy field can be created without taking up space with material. This model suggests that, while the failure to reach the ARPA-E storage target is due to material design constraints rather than purely thermodynamic constraints, the ARPA-E storage target is ambitiously close to the thermodynamic limit. In the second part of this work, we approach the problem of identifying a material that selectively adsorbs xenon over krypton. With over half a million nanoporous material structures to consider as candidate adsorbents, the computational cost of a brute-force computational screening strategy was prohibitive. Instead, we employed a machine learning algorithm, a random forest, to learn the relationship between quickly computed structural descriptors and Xe/Kr selectivity, which is more expensive to compute. The trained random forest allowed us to rule out a large percentage of the materials on the basis of quickly-computed structural descriptors. Our machine learning accelerated screening pinpoints top candidates on which to focus experimental efforts and elucidates structure-property relationships for design guidelines for a Xe-selective material. As we are now working with mixed gas adsorption, we developed a user-friendly software package in Python, pyIAST, for ideal adsorbed solution theory (IAST) calculations. IAST is a thermodynamic framework to predict mixed gas adsorption from pure-component adsorption isotherms, which are easier to measure. We provide practical guidelines for applying IAST. Finally, we carry out a high-throughput computational screening of metal-organic frameworks for capturing Xe from air at dilute conditions, a separation encountered in used nuclear fuel reprocessing. Our computational screening, facilitated by a parallelized code on GPUs, predicted a metal-organic framework, SBMOF-1, to be among the most Xe-selective. Our experimental collaborators synthesized and tested SBMOF-1 and found it to exhibit the highest Xe/Kr selectivity and Xe Henry coefficient reported in the literature. Column-breakthrough experiments reveal that SBMOF-1 is a near-term material for capturing xenon from the off-gases of used nuclear fuel reprocessing plants. This is a rare case of a computation-assisted materials discovery.

Book Nanoporous Materials  Science And Engineering

Download or read book Nanoporous Materials Science And Engineering written by G Q Max Lu and published by World Scientific. This book was released on 2004-11-22 with total page 911 pages. Available in PDF, EPUB and Kindle. Book excerpt: Porous materials are of scientific and technological importance because of the presence of voids of controllable dimensions at the atomic, molecular, and nanometer scales, enabling them to discriminate and interact with molecules and clusters. Interestingly the big deal about this class of materials is about the “nothingness” within — the pore space. International Union of Pure and Applied Chemistry (IUPAC) classifies porous materials into three categories — micropores of less than 2 nm in diameter, mesopores between 2 and 50 nm, and macropores of greater than 50 nm. In this book, nanoporous materials are defined as those porous materials with pore diameters less than 100 nm.Over the last decade, there has been an ever increasing interest and research effort in the synthesis, characterization, functionalization, molecular modeling and design of nanoporous materials. The main challenges in research include the fundamental understanding of structure-property relations and tailor-design of nanostructures for specific properties and applications. Research efforts in this field have been driven by the rapid growing emerging applications such as biosensor, drug delivery, gas separation, energy storage and fuel cell technology, nanocatalysis and photonics. These applications offer exciting new opportunities for scientists to develop new strategies and techniques for the synthesis and applications of these materials.This book provides a series of systematic reviews of the recent developments in nanoporous materials. It covers the following topics: (1) synthesis, processing, characterization and property evaluation; (2) functionalization by physical and/or chemical treatments; (3) experimental and computational studies on fundamental properties, such as catalytic effects, transport and adsorption, molecular sieving and biosorption; (4) applications, including photonic devices, catalysis, environmental pollution control, biological molecules separation and isolation, sensors, membranes, hydrogen and energy storage, etc./a

Book Hydrogen Storage Materials

Download or read book Hydrogen Storage Materials written by R.G. Barnes and published by Trans Tech Publications Ltd. This book was released on 1988-01-01 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: Materials Science Forum Vol. 31

Book Gas Adsorption in Metal Organic Frameworks

Download or read book Gas Adsorption in Metal Organic Frameworks written by T. Grant Glover and published by CRC Press. This book was released on 2018-09-03 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text discusses the synthesis, characterization, and application of metal-organic frameworks (MOFs) for the purpose of adsorbing gases. It provides details on the fundamentals of thermodynamics, mass transfer, and diffusion that are commonly required when evaluating MOF materials for gas separation and storage applications and includes a discussion of molecular simulation tools needed to examine gas adsorption in MOFs. Additionally, the work presents techniques that can be used to characterize MOFs after gas adsorption has occurred and provides guidance on the water stability of these materials. Lastly, applications of MOFs are considered with a discussion of how to measure the gas storage capacity of MOFs, a discussion of how to screen MOFs to for filtration applications, and a discussion of the use of MOFs to perform industrial separations, such as olefin/paraffin separations. Throughout the work, fundamental information, such as a discussion on the calculation of MOF surface area and description of adsorption phenomena in packed-beds, is balanced with a discussion of the results from research literature.

Book Characterization of Nanoporous Materials Using Gas Adsorption Isotherms

Download or read book Characterization of Nanoporous Materials Using Gas Adsorption Isotherms written by Vaiva Krungleviciute and published by . This book was released on 2009 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: In order to find/design porous materials that could be used in practical applications involving adsorption, it is important to investigate the basic properties (i.e. isosteric heat, specific surface area, binding energy, pore size, pore volume, etc.) of each material. With this aim in mind we have looked at three different types of materials: single-walled carbon nanotubes (prepared by the HiPco and laser methods), single-walled nanohorns (dahlia-like and bud-like) and metal-organic frameworks (Cu-BTC and RPM-1). For these substrates we have measured volumetric adsorption isotherms using several gases such as neon, argon, tetrafluoromethane (CF 4 ), xenon, and methane (not all gases for all substrates). Experimental adsorption isotherms were measured using methane, argon, xenon, and neon gases on unpurified single-walled carbon nanotubes prepared by the HiPco method. The main idea behind these experiments was to investigate, using different size gas molecules, the sites available for adsorption on this type of porous material.

Book Metal Organic Framework Materials

Download or read book Metal Organic Framework Materials written by Leonard R. MacGillivray and published by John Wiley & Sons. This book was released on 2014-09-19 with total page 1210 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal-Organic Frameworks (MOFs) are crystalline compounds consisting of rigid organic molecules held together and organized by metal ions or clusters. Special interests in these materials arise from the fact that many are highly porous and can be used for storage of small molecules, for example H2 or CO2. Consequently, the materials are ideal candidates for a wide range of applications including gas storage, separation technologies and catalysis. Potential applications include the storage of hydrogen for fuel-cell cars, and the removal and storage of carbon dioxide in sustainable technical processes. MOFs offer the inorganic chemist and materials scientist a wide range of new synthetic possibilities and open the doors to new and exciting basic research. Metal-Organic Frameworks Materials provides a solid basis for the understanding of MOFs and insights into new inorganic materials structures and properties. The volume also reflects progress that has been made in recent years, presenting a wide range of new applications including state-of-the art developments in the promising technology for alternative fuels. The comprehensive volume investigates structures, symmetry, supramolecular chemistry, surface engineering, recognition, properties, and reactions. The content from this book will be added online to the Encyclopedia of Inorganic and Bioinorganic Chemistry: http://www.wileyonlinelibrary.com/ref/eibc

Book Adsorption by Powders and Porous Solids

Download or read book Adsorption by Powders and Porous Solids written by Jean Rouquerol and published by Academic Press. This book was released on 2013-09-06 with total page 647 pages. Available in PDF, EPUB and Kindle. Book excerpt: The declared objective of this book is to provide an introductory review of the various theoretical and practical aspects of adsorption by powders and porous solids with particular reference to materials of technological importance. The primary aim is to meet the needs of students and non-specialists who are new to surface science or who wish to use the advanced techniques now available for the determination of surface area, pore size and surface characterization. In addition, a critical account is given of recent work on the adsorptive properties of activated carbons, oxides, clays and zeolites. Provides a comprehensive treatment of adsorption at both the gas/solid interface and the liquid/solid interface Includes chapters dealing with experimental methodology and the interpretation of adsorption data obtained with porous oxides, carbons and zeolites Techniques capture the importance of heterogeneous catalysis, chemical engineering and the production of pigments, cements, agrochemicals, and pharmaceuticals

Book Handbook Of Porous Materials  Synthesis  Properties  Modeling And Key Applications  In 4 Volumes

Download or read book Handbook Of Porous Materials Synthesis Properties Modeling And Key Applications In 4 Volumes written by and published by World Scientific. This book was released on 2020-10-20 with total page 1495 pages. Available in PDF, EPUB and Kindle. Book excerpt: This four-volume handbook gives a state-of-the-art overview of porous materials, from synthesis and characterization and simulation all the way to manufacturing and industrial applications. The editors, coming from academia and industry, are known for their didactic skills as well as their technical expertise. Coordinating the efforts of 37 expert authors in 14 chapters, they construct the story of porous carbons, ceramics, zeolites and polymers from varied viewpoints: surface and colloidal science, materials science, chemical engineering, and energy engineering. Volumes 1 and 2 cover the fundamentals of preparation, characterisation, and simulation of porous materials. Working from the fundamentals all the way to the practicalities of industrial production processes, the subjects include hierarchical materials, in situ and operando characterisation using NMR, X-Ray scattering and tomography, state-of-the-art molecular simulations of adsorption and diffusion in crystalline nanoporous materials, as well as the emerging areas of bio-artificing and drug delivery. Volume 3 focuses on porous materials in industrial separation applications, including adsorption separation, membrane separation, and osmotic distillation. Finally, and highly relevant to tomorrow's energy challenges, Volume 4 explains the energy engineering aspects of applying porous materials in supercapacitors, fuel cells, batteries, electrolysers and sub-surface energy applications.The text contains many high-quality colourful illustrations and examples, as well as thousands of up-to-date references to peer-reviewed articles, reports and websites for further reading. This comprehensive and well-written handbook is a must-have reference for universities, research groups and companies working with porous materials.Related Link(s)

Book Zeolites

    Book Details:
  • Author : Karmen Margeta
  • Publisher : BoD – Books on Demand
  • Release : 2020-07-22
  • ISBN : 1789854695
  • Pages : 152 pages

Download or read book Zeolites written by Karmen Margeta and published by BoD – Books on Demand. This book was released on 2020-07-22 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: Natural resources, such as zeolite minerals, have an inexhaustible potential for scientific research and application. Both natural and synthetic zeolites have application in many researched areas including water and soil industries, biochemistry, and medicine due to their environmental and economic acceptability, unique structure, and specific characteristics. Over three sections, this book presents a comprehensive overview of zeolites and their potential applications in science. Chapters cover such topics as the history of zeolites, their structure and properties, layered zeolites, and use of zeolites for gas storage and separation as well as in veterinary medicine.

Book Nanoporous Materials

Download or read book Nanoporous Materials written by S.H.. Jenkins and published by . This book was released on 2010 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoporous materials consist of a regular organic or inorganic framework supporting a porous structure. Nanoporous materials are separated into three subtypes: microporous materials, mesoporous materials and macroporous materials. In recent years, nanoporous materials have been recognized as promising candidates for the multifunctional applications such as catalysis, ion-exchange, gas storage low density magnetic storage, etc. In addition, nanoporous materials are also of scientific and technological importance because of their ability to absorb and co-operate with atoms, ions and molecules on their sizeable interior surfaces and pore space. This book proposes and reviews advances being made in the field of nanoporous materials.

Book Gas Adsorption in Metal Organic Frameworks

Download or read book Gas Adsorption in Metal Organic Frameworks written by T. Grant Glover and published by CRC Press. This book was released on 2018-09-03 with total page 523 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text discusses the synthesis, characterization, and application of metal-organic frameworks (MOFs) for the purpose of adsorbing gases. It provides details on the fundamentals of thermodynamics, mass transfer, and diffusion that are commonly required when evaluating MOF materials for gas separation and storage applications and includes a discussion of molecular simulation tools needed to examine gas adsorption in MOFs. Additionally, the work presents techniques that can be used to characterize MOFs after gas adsorption has occurred and provides guidance on the water stability of these materials. Lastly, applications of MOFs are considered with a discussion of how to measure the gas storage capacity of MOFs, a discussion of how to screen MOFs to for filtration applications, and a discussion of the use of MOFs to perform industrial separations, such as olefin/paraffin separations. Throughout the work, fundamental information, such as a discussion on the calculation of MOF surface area and description of adsorption phenomena in packed-beds, is balanced with a discussion of the results from research literature.

Book Chemistry of Zeolites and Related Porous Materials

Download or read book Chemistry of Zeolites and Related Porous Materials written by Ruren Xu and published by John Wiley & Sons. This book was released on 2009-05-29 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: Widely used in adsorption, catalysis and ion exchange, the family of molecular sieves such as zeolites has been greatly extended and many advances have recently been achieved in the field of molecular sieves synthesis and related porous materials. Chemistry of Zeolites and Related Porous Materials focuses on the synthetic and structural chemistry of the major types of molecular sieves. It offers a systematic introduction to and an in-depth discussion of microporous, mesoporous, and macroporous materials and also includes metal-organic frameworks. Provides focused coverage of the key aspects of molecular sieves Features two frontier subjects: molecular engineering and host-guest advanced materials Comprehensively covers both theory and application with particular emphasis on industrial uses This book is essential reading for researches in the chemical and materials industries and research institutions. The book is also indispensable for researches and engineers in R&D (for catalysis) divisions of companies in petroleum refining and the petrochemical and fine chemical industries.

Book Materials for Carbon Capture

Download or read book Materials for Carbon Capture written by De-en Jiang and published by John Wiley & Sons. This book was released on 2020-02-25 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covers a wide range of advanced materials and technologies for CO2 capture As a frontier research area, carbon capture has been a major driving force behind many materials technologies. This book highlights the current state-of-the-art in materials for carbon capture, providing a comprehensive understanding of separations ranging from solid sorbents to liquid sorbents and membranes. Filled with diverse and unconventional topics throughout, it seeks to inspire students, as well as experts, to go beyond the novel materials highlighted and develop new materials with enhanced separations properties. Edited by leading authorities in the field, Materials for Carbon Capture offers in-depth chapters covering: CO2 Capture and Separation of Metal-Organic Frameworks; Porous Carbon Materials: Designed Synthesis and CO2 Capture; Porous Aromatic Frameworks for Carbon Dioxide Capture; and Virtual Screening of Materials for Carbon Capture. Other chapters look at Ultrathin Membranes for Gas Separation; Polymeric Membranes; Carbon Membranes for CO2 Separation; and Composite Materials for Carbon Captures. The book finishes with sections on Poly(amidoamine) Dendrimers for Carbon Capture and Ionic Liquids for Chemisorption of CO2 and Ionic Liquid-Based Membranes. A comprehensive overview and survey of the present status of materials and technologies for carbon capture Covers materials synthesis, gas separations, membrane fabrication, and CO2 removal to highlight recent progress in the materials and chemistry aspects of carbon capture Allows the reader to better understand the challenges and opportunities in carbon capture Edited by leading experts working on materials and membranes for carbon separation and capture Materials for Carbon Capture is an excellent book for advanced students of chemistry, materials science, chemical and energy engineering, and early career scientists who are interested in carbon capture. It will also be of great benefit to researchers in academia, national labs, research institutes, and industry working in the field of gas separations and carbon capture.

Book Handbook of Hydrogen Storage

Download or read book Handbook of Hydrogen Storage written by Michael Hirscher and published by John Wiley & Sons. This book was released on 2010-04-26 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: Owing to the limited resources of fossil fuels, hydrogen is proposed as an alternative and environment-friendly energy carrier. However, its potential is limited by storage problems, especially for mobile applications. Current technologies, as compressed gas or liquefied hydrogen, comprise severe disadvantages and the storage of hydrogen in lightweight solids could be the solution to this problem. Since the optimal storage mechanism and optimal material have yet to be identified, this first handbook on the topic provides an excellent overview of the most probable candidates, highlighting both their advantages as well as drawbacks. From the contents: ¿ Physisorption ¿ Clathrates ¿ Metal hydrides ¿ Complex hydrides ¿ Amides, imides, and mixtures ¿ Tailoring Reaction Enthalpies ¿ Borazan ¿ Aluminum hydride ¿ Nanoparticles A one-stop reference on all questions concerning hydrogen storage for physical and solid state chemists, materials scientists, chemical engineers, and physicists.

Book Introduction to Reticular Chemistry

Download or read book Introduction to Reticular Chemistry written by Omar M. Yaghi and published by John Wiley & Sons. This book was released on 2019-03-22 with total page 684 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise introduction to the chemistry and design principles behind important metal-organic frameworks and related porous materials Reticular chemistry has been applied to synthesize new classes of porous materials that are successfully used for myraid applications in areas such as gas separation, catalysis, energy, and electronics. Introduction to Reticular Chemistry gives an unique overview of the principles of the chemistry behind metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and zeolitic imidazolate frameworks (ZIFs). Written by one of the pioneers in the field, this book covers all important aspects of reticular chemistry, including design and synthesis, properties and characterization, as well as current and future applications Designed to be an accessible resource, the book is written in an easy-to-understand style. It includes an extensive bibliography, and offers figures and videos of crystal structures that are available as an electronic supplement. Introduction to Reticular Chemistry: -Describes the underlying principles and design elements for the synthesis of important metal-organic frameworks (MOFs) and related materials -Discusses both real-life and future applications in various fields, such as clean energy and water adsorption -Offers all graphic material on a companion website -Provides first-hand knowledge by Omar Yaghi, one of the pioneers in the field, and his team. Aimed at graduate students in chemistry, structural chemists, inorganic chemists, organic chemists, catalytic chemists, and others, Introduction to Reticular Chemistry is a groundbreaking book that explores the chemistry principles and applications of MOFs, COFs, and ZIFs.

Book Nanoporous Gold

    Book Details:
  • Author : Arne Wittstock
  • Publisher : Royal Society of Chemistry
  • Release : 2012
  • ISBN : 1849733740
  • Pages : 265 pages

Download or read book Nanoporous Gold written by Arne Wittstock and published by Royal Society of Chemistry. This book was released on 2012 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides a broad, multidisciplinary platform to learn more about the properties of nanoporous gold from an interdisciplinary perspective from an overview of state-of-the-art applications and techniques to the latest research progress.