EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Nano Structured Photovoltaics

Download or read book Nano Structured Photovoltaics written by Vinod Kumar Khanna and published by CRC Press. This book was released on 2022-12-20 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: Key features: * Builds an integrated perspective of photovoltaics by highlighting the essential role of nanotechnology in each type of solar cell. * Performs simplified mathematical analysis of operational mechanisms of nanostructured solar cells supplemented with solved examples. * Enhances learning with clear explanations of technological advances and illustrative diagrams without sacrificing scientific rigor.

Book Nanostructured Materials for Solar Energy Conversion

Download or read book Nanostructured Materials for Solar Energy Conversion written by Tetsuo Soga and published by Elsevier. This book was released on 2006-12-14 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanostructured Materials for Solar Energy Conversion covers a wide variety of materials and device types from inorganic materials to organic materials. This book deals with basic semiconductor physics, modelling of nanostructured solar cell, nanostructure of conventional solar cells such as silicon, CIS and CdTe, dye-sensitized solar cell, organic solar cell, photosynthetic materials, fullerene, extremely thin absorber (ETA) solar cell, quantum structured solar cell, intermediate band solar cell, carbon nanotube, etc. including basic principle and the latest results. There are many books written on conventional p-n junction solar cells, but few books focus on new concepts in this area. * Focuses on the use of nanostructured materials for solar energy* Looks at a wide variety of materials and device types* Covers both organic and inorganic materials

Book Nanotechnology for Photovoltaics

Download or read book Nanotechnology for Photovoltaics written by Loucas Tsakalakos and published by CRC Press. This book was released on 2010-03-25 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: Current concerns regarding greenhouse gas-related environmental effects, energy security, and the rising costs of fossil fuel-based energy has renewed interest in solar energy in general and photovotaics in particular. Exploring state-of-the-art developments from a practical point of view, Nanotechnology for Photovoltaics examines issues in increas

Book Nanostructured Solar Cells

Download or read book Nanostructured Solar Cells written by Narottam Das and published by BoD – Books on Demand. This book was released on 2017-02-22 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanostructured solar cells are very important in renewable energy sector as well as in environmental aspects, because it is environment friendly. The nano-grating structures (such as triangular or conical shaped) have a gradual change in refractive index which acts as a multilayer antireflective coating that is leading to reduced light reflection losses over broadband ranges of wavelength and angle of incidence. There are different types of losses in solar cells that always reduce the conversion efficiency, but the light reflection loss is the most important factor that decreases the conversion efficiency of solar cells significantly. The antireflective coating is an optical coating which is applied to the surface of lenses or any optical devices to reduce the light reflection losses. This coating assists for the light trapping capturing capacity or improves the efficiency of optical devices, such as lenses or solar cells. Hence, the multilayer antireflective coatings can reduce the light reflection losses and increases the conversion efficiency of nanostructured solar cells.

Book Nanostructured Materials for Type III Photovoltaics

Download or read book Nanostructured Materials for Type III Photovoltaics written by Peter Skabara and published by Royal Society of Chemistry. This book was released on 2017-11-08 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: Materials for type III solar cells have branched into a series of generic groups. These include organic ‘small molecule’ and polymer conjugated structures, fullerenes, quantum dots, copper indium gallium selenide nanocrystal films, dyes/TiO2 for Grätzel cells, hybrid organic/inorganic composites and perovskites. Whilst the power conversion efficiencies of organic solar cells are modest compared to other type III photovoltaic materials, plastic semiconductors provide a cheap route to manufacture through solution processing and offer flexible devices. However, other types of materials are proving to be compatible with this type of processing whilst providing higher device efficiencies. As a result, the field is experiencing healthy competition between technologies that is pushing progress at a fast rate. In particular, perovskite solar cells have emerged very recently as a highly disruptive technology with power conversion efficiencies now over 20%. Perovskite cells, however, still have to address stability and environmental issues. With such a diverse range of materials, it is timely to capture the different technologies into a single volume of work. This book will give a collective insight into the different roles that nanostructured materials play in type III solar cells. This will be an essential text for those working with any of the devices highlighted above, providing a fundamental understanding and appreciation of the potential and challenges associated with each of these technologies.

Book Introduction of Nano Structured Solar Cells

Download or read book Introduction of Nano Structured Solar Cells written by Narottam Das and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction of Nano-Structured Solar Cells.

Book Nanostructured Materials for Type III Photovoltaics

Download or read book Nanostructured Materials for Type III Photovoltaics written by Mohammad Azad Malik and published by Royal Society of Chemistry. This book was released on 2017-11-08 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book will give a collective insight into the different roles that nanostructured materials play in Type III solar cells.

Book Physics of Nanostructured Solar Cells

Download or read book Physics of Nanostructured Solar Cells written by Viorel Badescu and published by . This book was released on 2010 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The world of nanotechnology has opened a vast array of novel frontiers in materials science, by the exploitation of the properties and phenomena at the nanometer scale. After transistors, also other devices will enter the nanoscale era. Technologies based on semi-conducting and/or organic materials have moved from a few empirical examples to a booming science-based activity. Physics at nanoscale becomes the science used for new device improvements. Solar cells are no exception to that. This book on nanophysics of photovoltaic cells thus comes at the right moment. Such a book will support research efforts in numerous laboratories where the solar cells of tomorrow are designed. The reader will be happy to find chapters on various topics, such as thermodynamics, photonics and electronics of dye-sensitised, electrochemical, nanostructured, polymer and organic materials. Light concentration, photoluminescence, intermediate-band absorption, photon conversion, and quantum confinement are discussed. The present book will surely be of great value for all scientists and engineers involved in the development of future solar cells.

Book Nanostructured And Photoelectrochemical Systems For Solar Photon Conversion

Download or read book Nanostructured And Photoelectrochemical Systems For Solar Photon Conversion written by Mary D Archer and published by World Scientific. This book was released on 2008-08-04 with total page 781 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, expert authors describe advanced solar photon conversion approaches that promise highly efficient photovoltaic and photoelectrochemical cells with sophisticated architectures on the one hand, and plastic photovoltaic coatings that are inexpensive enough to be disposable on the other. Their leitmotifs include light-induced exciton generation, junction architectures that lead to efficient exciton dissociation, and charge collection by percolation through mesoscale phases. Photocatalysis is closely related to photoelectrochemistry, and the fundamentals of both disciplines are covered in this volume./a

Book Nanostructured Solar Cells

Download or read book Nanostructured Solar Cells written by Guanying Chen and published by MDPI. This book was released on 2018-07-04 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue "Nanostructured Solar Cells" that was published in Nanomaterials

Book Nanostructured and Advanced Materials for Applications in Sensor  Optoelectronic and Photovoltaic Technology

Download or read book Nanostructured and Advanced Materials for Applications in Sensor Optoelectronic and Photovoltaic Technology written by Ashok K. Vaseashta and published by Springer Science & Business Media. This book was released on 2007-04-29 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: The principal aim of this NATO Advanced Study Institute (ASI) "Nanostructured and Advanced Materials for Applications in Sensor, Optoelectronic and Photovoltaic Technology" was to present a contemporary overview of the field of nanostructured and advanced electronic materials. Nanotechnology is an emerging scientific field receiving significant worldwide attention. On a nanometer scale, materials or structures may possess new and unique physical properties. Some of these are now known to the scientific community, but there may well be many properties not yet known to us, rendering it as a fascinating area of research and a suitable subject for a NATO ASI. Yet another aspect of the field is the possibility for creating meta-stable phases with unconventional properties and the ultra-miniaturization of current devices, sensors, and machines. Such nanotechnological and related advanced materials have an extremely wide range of potential applications, viz. nanoscale electronics, sensors, optoelectronics, photonics, nano-biological systems, na- medicine, energy storage systems, etc. This is a wide-ranging subject area and therefore requires the formation of multi-disciplinary teams of physicists, chemists, materials scientists, engineers, molecular biologists, pharmacologists, and others to work together on the synthesis and processing of materials and structures, the understanding of their physical properties, the design and fabrication of devices, etc. Hence, in formulating our ASI, we adopted an int- disciplinary approach, bringing together recognised experts in the various fields while retaining a level of treatment accessible to those active in specific individual areas of research and development.

Book Towards High Efficiency and Low Cost Nano structured III V Solar Cells

Download or read book Towards High Efficiency and Low Cost Nano structured III V Solar Cells written by Gu Anjia and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: State-of-the-art III-V multijunction solar cells have achieved a record efficiency of 42%, the highest solar-electric conversion efficiency achieved by any technology. This has fueled great interest in the utility sector for large-scale deployment of solar cells. However, III-V solar cells have thus far proven too expensive for widespread terrestrial applications due to the combined cost of substrates, growth processes and materials. Here, we propose a novel III-V solar cell design based on the epitaxial growth of AlGaAs/GaAs on pre-patterned low-cost substrates to provide a path to cost-effective, large-scale deployment. This approach is based on our discovery that the surface kinetics of epitaxial growth by MBE is significantly altered when growing on three dimensional nanostructures instead of planar surfaces. Based on our exploratory results, we present the device design, electrical and optical simulation, and materials growth and device fabrication and characterization of core-shell nanostructured III-V solar cells. We use both bottom-up and top-down approaches to prepare the nanostructured templates in shape of nanowires and nanopyramids. Finite-difference time-domain (FDTD) and Rigorous Coupled Wave Analysis (RCWA) simulation show that the nanostructures have enhanced absorption and much wider incident acceptance angles than their planar counterpart, and outperform planar three-layer anti-reflective coatings. We first demonstrated high quality, single crystal III-V (GaAs and AlGaAs) polar material conformally epi grown on group IV (nanostructured Ge on Si substrate) nonpolar material via MBE and MOVPE (also known as MOCVD) with largely reduced anti-phase domains. We developed complete and mature routines to fabricate a working, single crystalline III-V solar cell on a nanostructured template. The I-V characterization of the fabricated nanostructured GaAs solar cell proves the concept and shows the great potential of making high-efficiency nano-structured III-V solar cells on low-cost substrates.

Book Nanostructured Materials for Next Generation Energy Storage and Conversion

Download or read book Nanostructured Materials for Next Generation Energy Storage and Conversion written by Tulay Aygan Atesin and published by Springer Nature. This book was released on 2019-11-15 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanostructured Materials for Next-Generation Energy Storage and Conversion: Photovoltaic and Solar Energy, is volume 4 of a 4-volume series on sustainable energy. Photovoltaic and Solar Energy while being a comprehensive reference work, is written with minimal jargon related to various aspects of solar energy and energy policies. It is authored by leading experts in the field, and lays out theory, practice, and simulation studies related to solar energy and allied applications including policy, economic and technological challenges. Topics covered include: introduction to solar energy, fundamentals of solar radiation, heat transfer, thermal collection and conversion, solar economy, heating, cooling, dehumidification systems, power and process heat, solar power conversion, policy and applications pertinent to solar energy as viable alternatives to fossil fuels. The aim of the book is to present all the information necessary for the design and analysis of solar energy systems for engineers, material scientists, economics, policy analysts, graduate students, senior undergraduates, solar energy practitioner, as well as policy or lawmakers in the field of energy policy, international energy trade, and libraries which house technical handbooks related to energy, energy policy and applications.

Book Nanostructured Semiconductors

Download or read book Nanostructured Semiconductors written by Serge Zhuiykov and published by Woodhead Publishing. This book was released on 2018-01-02 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanostructured Semiconductors focuses on the development of semiconductor nanocrystals, their technologies and applications, including energy harvesting, solar cells, solid oxide fuel cells, and chemical sensors. Semiconductor oxides are used in electronics, optics, catalysts, sensors, and other functional devices. In their 2D form, the reduction in size confers exceptional properties, useful for creating faster electronics and more efficient catalysts. Since the first edition of the book, there has been significant progress in the development of new functional nanomaterials with unique and sometimes unpredictable quantum-confined properties within the class what it called two-dimensional (2D) semiconductors. These nanocrystals represent extremely thin nano-structures with thickness of just few nano-meters. Since that time, not only were 2D semiconductor oxides further developed, more importantly, 2D metal dichalcogenides, such as MoS2, MoSe2, WS2, WSe2 and others also progressed significantly in their development demonstrating their superior properties compared to their bulk and microstructural counterparts. The book has been expanded to include these advancements. The book begins with the structure and properties of semiconductor nanocrystals (chapter 1), addresses electronic device applications (chapter 2), discusses 2-Dimensional oxides and dichalcogenide semiconductors (chapters 3 through 5), and ends with energy, environment, and bio applications (chapters 6 through 8). Focuses on the development of semiconductor nanocrystals and their technologies and applications, including energy harvesting, solar cells, solid oxide fuel cells and chemical sensors Include other 2D materials, such as dichalcogenides to present a comprehensive resource on the latest advancements in nanostructured semiconductors Reviews the fundamental physics of conductivity and electron arrangement before proceeding to practical applications Contains a unique chapter dedicated to the new atomic layer deposition (ALD) technique which has the ability to develop 2D nanostructures with great precision

Book Nanotechnology and Photovoltaic Devices

Download or read book Nanotechnology and Photovoltaic Devices written by Jan Valenta and published by CRC Press. This book was released on 2015-06-01 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon is an abundant element and is produced in large quantities for the electronic industry. The falling price of this commodity also feeds the growth of solar photovoltaics (PV). However, solar cells (SCs) based on bulk semiconductors have quite limited maximum attainable performance. Therefore, new principles and materials are being investigat

Book Low Dimensional and Nanostructured Materials and Devices

Download or read book Low Dimensional and Nanostructured Materials and Devices written by Hilmi Ünlü and published by Springer. This book was released on 2015-12-01 with total page 688 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the fundamental phenomena at nanoscale. It covers synthesis, properties, characterization and computer modelling of nanomaterials, nanotechnologies, bionanotechnology, involving nanodevices. Further topics are imaging, measuring, modeling and manipulating of low dimensional matter at nanoscale. The topics covered in the book are of vital importance in a wide range of modern and emerging technologies employed or to be employed in most industries, communication, healthcare, energy, conservation , biology, medical science, food, environment, and education, and consequently have great impact on our society.

Book Photon Absorption Models in Nanostructured Semiconductor Solar Cells and Devices

Download or read book Photon Absorption Models in Nanostructured Semiconductor Solar Cells and Devices written by Antonio Luque and published by Springer. This book was released on 2015-03-17 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended to be used by materials and device physicists and also solar cells researchers. It models the performance characteristics of nanostructured solar cells and resolves the dynamics of transitions between several levels of these devices. An outstanding insight into the physical behaviour of these devices is provided, which complements experimental work. This therefore allows a better understanding of the results, enabling the development of new experiments and optimization of new devices. It is intended to be accessible to researchers, but also to provide engineering tools which are often only accessible to quantum physicists. Photon Absorption Models in Nanostructured Semiconductor Solar Cells and Devices is intended to provide an easy-to-handle means to calculate the light absorption in nanostructures, the final goal being the ability to model operational behaviour of nanostructured solar cells. It allows researchers to design new experiments and improve solar cell performances, and offers a means for the easy approximate calculation of the energy spectrum and photon absorption coefficients of nanostructures. This calculation is based on the effective mass model and uses a new Hamiltonian called the Empirical kp Hamiltonian, which is based on a four band kp model.