EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Multivariable Control Systems

Download or read book Multivariable Control Systems written by P. Albertos Pérez and published by Springer Science & Business Media. This book was released on 2004 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multivariable Control Systems focuses on control design with continual references to the practical aspects of implementation. While the concepts of multivariable control are justified, the book emphasises the need to maintain student interest and motivation over exhaustive mathematical proof. Tools of analysis and representation are always developed as methods for achieving a final control system design and evaluation. Features: • design implementation laid out using extensive reference to MATLAB®; • combined consideration of systems (plant) and signals (mainly disturbances); • step-by-step approach from the objectives of multivariable control to the solution of complete design problems. Multivariable Control Systems is an ideal text for graduate students or for final-year undergraduates looking for more depth than provided by introductory textbooks. It will also interest the control engineer practising in industry and seeking to implement robust or multivariable control solutions to plant problems.

Book Linear Multivariable Control

    Book Details:
  • Author : W. M. Wonham
  • Publisher : Springer Science & Business Media
  • Release : 2013-11-21
  • ISBN : 3662226731
  • Pages : 357 pages

Download or read book Linear Multivariable Control written by W. M. Wonham and published by Springer Science & Business Media. This book was released on 2013-11-21 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: In writing this monograph my objective is to present arecent, 'geometrie' approach to the structural synthesis of multivariable control systems that are linear, time-invariant, and of finite dynamic order. The book is addressed to graduate students specializing in control, to engineering scientists engaged in control systems research and development, and to mathematicians with some previous acquaintance with control problems. The label 'geometrie' is applied for several reasons. First and obviously, the setting is linear state space and the mathematics chiefly linear algebra in abstract (geometrie) style. The basic ideas are the familiar system concepts of controllability and observability, thought of as geometrie properties of distinguished state subspaces. Indeed, the geometry was first brought in out of revulsion against the orgy of matrix manipulation which linear control theory mainly consisted of, not so long ago. But secondlyand of greater interest, the geometrie setting rather quickly suggested new methods of attacking synthesis which have proved to be intuitive and economical; they are also easily reduced to matrix arith metic as soonas you want to compute. The essence of the 'geometrie' approach is just this: instead of looking directly for a feedback laW (say u = Fx) which would solve your synthesis problem if a solution exists, first characterize solvability as a verifiable property of some constructible state subspace, say J. Then, if all is weIl, you may calculate F from J quite easily.

Book Linear Multivariable Control Systems

Download or read book Linear Multivariable Control Systems written by Shankar P. Bhattacharyya and published by Cambridge University Press. This book was released on 2022-01-13 with total page 697 pages. Available in PDF, EPUB and Kindle. Book excerpt: A graduate text providing broad coverage of linear multivariable control systems, including several new results and recent approaches.

Book Multivariable Feedback Control

Download or read book Multivariable Feedback Control written by Sigurd Skogestad and published by John Wiley & Sons. This book was released on 2005-11-04 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multivariable Feedback Control: Analysis and Design, Second Edition presents a rigorous, yet easily readable, introduction to the analysis and design of robust multivariable control systems. Focusing on practical feedback control and not on system theory in general, this book provides the reader with insights into the opportunities and limitations of feedback control. Taking into account the latest developments in the field, this fully revised and updated second edition: * features a new chapter devoted to the use of linear matrix inequalities (LMIs); * presents current results on fundamental performance limitations introduced by RHP-poles and RHP-zeros; * introduces updated material on the selection of controlled variables and self-optimizing control; * provides simple IMC tuning rules for PID control; * covers additional material including unstable plants, the feedback amplifier, the lower gain margin and a clear strategy for incorporating integral action into LQG control; * includes numerous worked examples, exercises and case studies, which make frequent use of Matlab and the new Robust Control toolbox. Multivariable Feedback Control: Analysis and Design, Second Edition is an excellent resource for advanced undergraduate and graduate courses studying multivariable control. It is also an invaluable tool for engineers who want to understand multivariable control, its limitations, and how it can be applied in practice. The analysis techniques and the material on control structure design should prove very useful in the new emerging area of systems biology. Reviews of the first edition: "Being rich in insights and practical tips on controller design, the book should also prove to be very beneficial to industrial control engineers, both as a reference book and as an educational tool." Applied Mechanics Reviews "In summary, this book can be strongly recommended not only as a basic text in multivariable control techniques for graduate and undergraduate students, but also as a valuable source of information for control engineers." International Journal of Adaptive Control and Signal Processing

Book Mono  and Multivariable Control and Estimation

Download or read book Mono and Multivariable Control and Estimation written by Eric Ostertag and published by Springer Science & Business Media. This book was released on 2011-01-03 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the various design methods of a state-feedback control law and of an observer. The considered systems are of continuous-time and of discrete-time nature, monovariable or multivariable, the last ones being of main consideration. Three different approaches are described: • Linear design methods, with an emphasis on decoupling strategies, and a general formula for multivariable controller or observer design; • Quadratic optimization methods: Linear Quadratic Control (LQC), optimal Kalman filtering, Linear Quadratic Gaussian (LQG) control; • Linear matrix inequalities (LMIs) to solve linear and quadratic problems. The duality between control and observation is taken to advantage and extended up to the mathematical domain. A large number of exercises, all given with their detailed solutions, mostly obtained with MATLAB, reinforce and exemplify the practical orientation of this book. The programs, created by the author for their solving, are available on the Internet sites of Springer and of MathWorks for downloading. This book is targeted at students of Engineering Schools or Universities, at the Master’s level, at engineers desiring to design and implement innovative control methods, and at researchers.

Book Multivariable System Identification For Process Control

Download or read book Multivariable System Identification For Process Control written by Y. Zhu and published by Elsevier. This book was released on 2001-10-08 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: Systems and control theory has experienced significant development in the past few decades. New techniques have emerged which hold enormous potential for industrial applications, and which have therefore also attracted much interest from academic researchers. However, the impact of these developments on the process industries has been limited.The purpose of Multivariable System Identification for Process Control is to bridge the gap between theory and application, and to provide industrial solutions, based on sound scientific theory, to process identification problems. The book is organized in a reader-friendly way, starting with the simplest methods, and then gradually introducing more complex techniques. Thus, the reader is offered clear physical insight without recourse to large amounts of mathematics. Each method is covered in a single chapter or section, and experimental design is explained before any identification algorithms are discussed. The many simulation examples and industrial case studies demonstrate the power and efficiency of process identification, helping to make the theory more applicable. MatlabTM M-files, designed to help the reader to learn identification in a computing environment, are included.

Book Multivariable Control Systems

Download or read book Multivariable Control Systems written by Pedro Albertos and published by Springer Science & Business Media. This book was released on 2006-04-18 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on control design with continual references to the practical aspects of implementation. While the concepts of multivariable control are justified, the book emphasizes the need to maintain student interest and motivation over exhaustively rigorous mathematical proof.

Book Robust Multivariable Flight Control

Download or read book Robust Multivariable Flight Control written by Richard J. Adams and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 175 pages. Available in PDF, EPUB and Kindle. Book excerpt: Manual flight control system design for fighter aircraft is one of the most demanding problems in automatic control. Fighter aircraft dynamics generally have highly coupled uncertain and nonlinear dynamics. Multivariable control design techniques offer a solution to this problem. Robust Multivariable Flight Control provides the background, theory and examples for full envelope manual flight control system design. It gives a versatile framework for the application of advanced multivariable control theory to aircraft control problems. Two design case studies are presented for the manual flight control of lateral/directional axes of the VISTA-F-16 test vehicle and an F-18 trust vectoring system. They demonstrate the interplay between theory and the physical features of the systems.

Book Multivariable Control

Download or read book Multivariable Control written by S.G. Tzafestas and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: The foundation of linear systems theory goes back to Newton and has been followed over the years by many improvements such as linear operator theory, Laplace Transformation etc. After the World War II, feedback control theory has shown a rapid development, and standard elegant analysis and synthesis techniques have been discovered by control system workers, such as root-locus (Evans) and frequency response methods (Nyquist, Bode). These permitted a fast and efficient analysis of simple-loop control systems, but in their original "paper-and-pencil" form were not appropriate for multiple loop high-order systems. The advent of fast digital computers, together with the development of multivariable multi-loop system techniques, have eliminated these difficulties. Multivariable control theory has followed two main avenues; the optimal control approach, and the algebraic and frequency-domain control approach. An important key concept in the whole multivariable system theory is "ob servability and controllability" which revealed the exact relationships between transfer functions and the state variable representations. This has given new insight into the phenomenon of "hidden oscillations" and to the transfer function modelling of dynamic systems. The basic tool in optimal control theory is the celebrated matrix Riccati differential equation which provides the time-varying feedback gains in a linear-quadratic control system cell. Much theory presently exists for the characteristic properties and solution of this Riccati equation.

Book A Generalized Framework of Linear Multivariable Control

Download or read book A Generalized Framework of Linear Multivariable Control written by Liansheng Tan and published by Butterworth-Heinemann. This book was released on 2017-02-04 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Generalized Framework of Linear Multivariable Control proposes a number of generalized models by using the generalized inverse of matrix, while the usual linear multivariable control theory relies on some regular models. The book supports that in H-infinity control, the linear fractional transformation formulation is relying on the inverse of the block matrix. If the block matrix is not regular, the H-infinity control does not apply any more in the normal framework. Therefore, it is very important to relax those restrictions to generalize the classical notions and models to include some non-regular cases. This book is ideal for scholars, academics, professional engineer and students who are interested in control system theory. Presents a comprehensive set of numerical procedures, algorithms, and examples on how to deal with irregular models Provides a summary on generalized framework of linear multivariable control that focuses on generalizations of models and notions Introduces a number of generalized models by using the generalized inverse of matrix

Book Control Configuration Selection for Multivariable Plants

Download or read book Control Configuration Selection for Multivariable Plants written by A. Khaki-Sedigh and published by Springer Science & Business Media. This book was released on 2009-09-23 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Control of multivariable industrial plants and processes has been a challenging and fascinating task for researchers in this field. The analysis and design methodologies for multivariable plants can be categorized as centralized and decentralized design strategies. Despite the remarkable theoretical achievements in centralized multiva- able control, decentralized control is still widely used in many industrial plants. This trend in the beginning of the third millennium is still there and it will be with us for the foreseeable future. This is mainly because of the easy implementation, main- nance, tuning, and robust behavior in the face of fault and model uncertainties, which is reported with the vast number of running decentralized controllers in the industry. The main steps involved in employing decentralized controllers can be summarized as follows: • Control objectives formulation and plant modeling. • Control structure selection. • Controller design. • Simulation or pilot plant experiments and Implementation. Nearly all the textbooks on multivariable control theory deal only with the control system analysis and design. The important concept of control structure selection which is a key prerequisite for a successful industrial control strategy is almost unnoticed. Structure selection involves the following two main steps: • Inputs and outputs selection. • Control configuration selection or the input-output pairing problem. This book focuses on control configuration selection or the input-output pairing problem, which is defined as the procedure of selecting the appropriate input and output pair for the design of SISO (or block) controllers.

Book Algorithms for Computer Aided Design of Multivariable Control Systems

Download or read book Algorithms for Computer Aided Design of Multivariable Control Systems written by S. Bingulac and published by CRC Press. This book was released on 1993-06-16 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: This reference/text discusses the structure and concepts of multivariable control systems, offering a balanced presentation of theory, algorithm development, and methods of implementation.;The book contains a powerful software package - L.A.S (Linear Algebra and Systems) which provides a tool for verifying an analysis technique or control design.;Reviewing the fundamentals of linear algebra and system theory, Algorithms for Computer-Aided Design of Multivariable Control Systems: supplies a solid basis for understanding multivariable systems and their characteristics; highlights the most relevant mathematical developments while keeping proofs and detailed derivations to a minimum; emphasizes the use of computer algorithms; provides special sections of application problems and their solutions to enhance learning; presents a unified theory of linear multi-input, multi-output (MIMO) system models; and introduces new results based on pseudo-controllability and pseudo-observability indices, furnishing algorithms for more accurate internodel conversions.;Illustrated with figures, tables and display equations and containing many previously unpublished results, Algorithms for Computer-Aided Design of Multivariable Control Systems is a reference for electrical and electronics, mechanical and control engineers and systems analysts as well as a text for upper-level undergraduate, graduate and continuing-education courses in multivariable control.

Book Robust Multivariable Control of Aerospace Systems

Download or read book Robust Multivariable Control of Aerospace Systems written by Declan Bates and published by IOS Press. This book was released on 2002 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: Classical design and analysis techniques, many of which date back to the 1950's, are still predominantly used in the aerospace industry for the design and analysis of automatic flight control and aero-engine control systems. The continued success and popularity of these techniques is particularly impressive considering the radical advances in aircraft and spacecraft design and avionics technology made over this period. Clearly, an understanding of both the advantages and limitations of these methods is essential in order to properly evaluate the likely usefulness of more modern techniques for the design and analysis of aerospace control systems. One of the themes of this book is that the multivariable robust control methods it describes are logical and natural extensions of the more classical methods, and not replacements for them. It is assumed that readers of this publication are already familiar with classical flight control techniques. Emphasis is on the philosophy, advantages and limitations of the classical approach to flight control system design and analysis. Abstracted in Inspec

Book Linear and Nonlinear Multivariable Feedback Control

Download or read book Linear and Nonlinear Multivariable Feedback Control written by Oleg Gasparyan and published by John Wiley & Sons. This book was released on 2008-03-03 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: Automatic feedback control systems play crucial roles in many fields, including manufacturing industries, communications, naval and space systems. At its simplest, a control system represents a feedback loop in which the difference between the ideal (input) and actual (output) signals is used to modify the behaviour of the system. Control systems are in our homes, computers, cars and toys. Basic control principles can also be found in areas such as medicine, biology and economics, where feedback mechanisms are ever present. Linear and Nonlinear Multivariable Feedback Control presents a highly original, unified control theory of both linear and nonlinear multivariable (also known as multi-input multi-output (MIMO)) feedback systems as a straightforward extension of classical control theory. It shows how the classical engineering methods look in the multidimensional case and how practising engineers or researchers can apply them to the analysis and design of linear and nonlinear MIMO systems. This comprehensive book: uses a fresh approach, bridging the gap between classical and modern, linear and nonlinear multivariable control theories; includes vital nonlinear topics such as limit cycle prediction and forced oscillations analysis on the basis of the describing function method and absolute stability analysis by means of the primary classical frequency-domain criteria (e.g. Popov, circle or parabolic criteria); reinforces the main themes with practical worked examples solved by a special MATLAB-based graphical user interface, as well as with problems, questions and exercises on an accompanying website. The approaches presented in Linear and Nonlinear Multivariable Feedback Control form an invaluable resource for graduate and undergraduate students studying multivariable feedback control as well as those studying classical or modern control theories. The book also provides a useful reference for researchers, experts and practitioners working in industry

Book Linear Multivariable Control

Download or read book Linear Multivariable Control written by A. I. G. Vardulakis and published by John Wiley & Sons. This book was released on 1991 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Details the basic theory of polynomial and fractional representation methods for algebraic analysis and synthesis of linear multivariable control systems. It also serves as a self-contained treatise of the mathematical theory so that results and techniques of the ``state space approaches'' for regular and singular systems appear as special cases of a general theory covering the wider class of PMDs of linear systems. Among the topics covered are: real rational vector spaces and rational matrices, pole and zero structure of rational matrices at infinity, proper and omega stable rational fuctions and matrices.

Book Linear Multivariable Systems

    Book Details:
  • Author : W. A. Wolovich
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 1461263921
  • Pages : 369 pages

Download or read book Linear Multivariable Systems written by W. A. Wolovich and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text was developed over a three year period of time (1971- 1973) from a variety of notes and references used in the presentation of a senior/first year graduate level course in the Division of En gineering at Brown University titled Linear System Theory. The in tent of the course was not only to introduce students to the more modern, state-space approach to multivariable control system analysis and design, as opposed to the classical, frequency domain approach, but also to draw analogies between the two approaches whenever and wherever possible. It is therefore felt that the material presented will have broader appeal to practicing engineers than a text devoted exclusively to the state-space approach. It was assumed that students taking the course had also taken, as a prerequisite, an undergraduate course in classical control theory and also were familiar with certain standard linear algebraic notions as well as the theory of ordinary differential equations, although a substantial effort was expended to make the material as self-contained as possible. In particular, Chapter 2 is employed to familiarize the reader with a good deal of the mathematical material employed through out the remainder of the text. Chapters 3 through 5 were drawn, in part, from a number of contemporary state-space and matrix algebraic references, as well as some recent research of the author, especially those portions which deal with polynomial matrices and the differential operator approach.

Book Design of Linear Multivariable Feedback Control Systems

Download or read book Design of Linear Multivariable Feedback Control Systems written by Joseph J. Bongiorno Jr. and published by Springer Nature. This book was released on 2020-07-09 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a derivation of the subset of stabilizing controllers for analog and digital linear time-invariant multivariable feedback control systems that insure stable system errors and stable controller outputs for persistent deterministic reference inputs that are trackable and for persistent deterministic disturbance inputs that are rejectable. For this subset of stabilizing controllers, the Wiener-Hopf methodology is then employed to obtain the optimal controller for which a quadratic performance measure is minimized. This is done for the completely general standard configuration and methods that enable the trading off of optimality for an improved stability margin and/or reduced sensitivity to plant model uncertainty are described. New and novel results on the optimal design of decoupled (non-interacting) systems are also presented. The results are applied in two examples: the one- and three-degree-of-freedom configurations. These demonstrate that the standard configuration is one encompassing all possible feedback configurations. Each chapter is completed by a group of worked examples, which reveal additional insights and extensions of the theory presented in the chapter. Three of the examples illustrate the application of the theory to two physical cases: the depth and pitch control of a submarine and the control of a Rosenbrock process. In the latter case, designs with and without decoupling are compared. This book provides researchers and graduate students working in feedback control with a valuable reference for Wiener–Hopf theory of multivariable design. Basic knowledge of linear systems and matrix theory is required.