EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Multilayer Integrated Film Bulk Acoustic Resonators

Download or read book Multilayer Integrated Film Bulk Acoustic Resonators written by Yafei Zhang and published by Springer Science & Business Media. This book was released on 2012-08-28 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mulilayer Integrated Film Bulk Acoustic Resonators mainly introduces the theory, design, fabrication technology and application of a recently developed new type of device, multilayer integrated film bulk acoustic resonators, at the micro and nano scale involving microelectronic devices, integrated circuits, optical devices, sensors and actuators, acoustic resonators, micro-nano manufacturing, multilayer integration, device theory and design principles, etc. These devices can work at very high frequencies by using the newly developed theory, design, and fabrication technology of nano and micro devices. Readers in fields of IC, electronic devices, sensors, materials, and films etc. will benefit from this book by learning the detailed fundamentals and potential applications of these advanced devices. Prof. Yafei Zhang is the director of the Ministry of Education’s Key Laboratory for Thin Films and Microfabrication Technology, PRC; Dr. Da Chen was a PhD student in Prof. Yafei Zhang’s research group.

Book Multilayer Integrated Film Bulk Acoustic Resonators

Download or read book Multilayer Integrated Film Bulk Acoustic Resonators written by Springer and published by . This book was released on 2012-08-29 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Multilayer Integrated Film Bulk Acoustic Resonators

Download or read book Multilayer Integrated Film Bulk Acoustic Resonators written by Yafei Zhang and published by . This book was released on 2013 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Tuneable Film Bulk Acoustic Wave Resonators

Download or read book Tuneable Film Bulk Acoustic Wave Resonators written by Spartak Gevorgian and published by Springer Science & Business Media. This book was released on 2013-02-14 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: To handle many standards and ever increasing bandwidth requirements, large number of filters and switches are used in transceivers of modern wireless communications systems. It makes the cost, performance, form factor, and power consumption of these systems, including cellular phones, critical issues. At present, the fixed frequency filter banks based on Film Bulk Acoustic Resonators (FBAR) are regarded as one of the most promising technologies to address performance -form factor-cost issues. Even though the FBARs improve the overall performances the complexity of these systems remains high. Attempts are being made to exclude some of the filters by bringing the digital signal processing (including channel selection) as close to the antennas as possible. However handling the increased interference levels is unrealistic for low-cost battery operated radios. Replacing fixed frequency filter banks by one tuneable filter is the most desired and widely considered scenario. As an example, development of the software based cognitive radios is largely hindered by the lack of adequate agile components, first of all tuneable filters. In this sense the electrically switchable and tuneable FBARs are the most promising components to address the complex cost-performance issues in agile microwave transceivers, smart wireless sensor networks etc. Tuneable Film Bulk Acoustic Wave Resonators discusses FBAR need, physics, designs, modelling, fabrication and applications. Tuning of the resonant frequency of the FBARs is considered. Switchable and tuneable FBARs based on electric field induced piezoelectric effect in paraelectric phase ferroelectrics are covered. The resonance of these resonators may be electrically switched on and off and tuned without hysteresis. The book is aimed at microwave and sensor specialists in the industry and graduate students. Readers will learn about principles of operation and possibilities of the switchable and tuneable FBARs, and will be given general guidelines for designing, fabrication and applications of these devices.

Book Thin film Bulk Acoustic Resonators on Integrated Circuits for Physical Sensing Applications

Download or read book Thin film Bulk Acoustic Resonators on Integrated Circuits for Physical Sensing Applications written by Matthew Leigh Johnston and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The fabrication of 0.8-1.5 GHz FBAR devices is validated for both off-chip and on-chip devices, and the integrated system is characterized for sensitivity and limit of detection. On-chip, parallel measurement of multiple sensors in real time is demonstrated for a quantitative vapor sensing application, and the limit of detection is below 50 ppm. This sensor platform could be used for a broad scope of label-free detection applications in chemistry, biology, and medicine, and it demonstrates potential for enabling a low-cost, point of use instrument.

Book Acoustic Wave and Electromechanical Resonators

Download or read book Acoustic Wave and Electromechanical Resonators written by Humberto Campanella and published by Artech House. This book was released on 2010 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: This groundbreaking book provides you with a comprehensive understanding of FBAR (thin-film bulk acoustic wave resonator), MEMS (microelectomechanical system), and NEMS (nanoelectromechanical system) resonators. For the first time anywhere, you find extensive coverage of these devices at both the technology and application levels. This practical reference offers you guidance in design, fabrication, and characterization of FBARs, MEMS and NEBS. It discusses the integration of these devices with standard CMOS (complementary-metal-oxide-semiconductor) technologies, and their application to sensing and RF systems. Moreover, this one-stop resource looks at the main characteristics, differences, and limitations of FBAR, MEMS, and NEMS devices, helping you to choose the right approaches for your projects. Over 280 illustrations and more than 130 equations support key topics throughout the book.

Book Film Bulk Acoustic Resonators of High Quality Factors in Liquid Environments for Biosensing Applications

Download or read book Film Bulk Acoustic Resonators of High Quality Factors in Liquid Environments for Biosensing Applications written by Wencheng Xu and published by . This book was released on 2011 with total page 74 pages. Available in PDF, EPUB and Kindle. Book excerpt: Micro-electro-mechanical systems (MEMS) film bulk acoustic resonator (FBAR) demonstrates label-free biosensing capabilities and is considered to be a promising alternative of quartz crystal microbalance (QCM). FBARs achieve great success in vacuum, or in the air, but find limited applications in liquid media because squeeze damping significantly degrades quality factor (Q) and results in poor frequency resolution. A transmission-line model shows that by confining the liquid in a thickness comparable to the acoustic wavelength of the resonator, Q can be considerably improved. The devices exhibit damped oscillatory patterns of Q as the liquid thickness varies. Q assumes its maxima and minima when the channel thickness is an odd and even multiple of the quarter-wavelength of the resonance, respectively. Microfluidic channels are integrated with longitudinal-mode FBARs (L-FBARs) to realize this design; a tenfold improvement of Q over fully-immersed devices is experimentally verified. Microfluidic integrated FBAR sensors have been demonstrated for detecting protein binding in liquid and monitoring the Vroman effect (the competitive protein adsorption behavior), showing their potential as a promising bio-analytical tool. A contour-mode FBAR (C-FBAR) is developed to further improve Q and to alleviate the need for complex integration of microfluidic channels. The C-FBAR consists of a suspended piezoelectric ring made of aluminum nitride and is excited in the fundamental radial-extensional mode. By replacing the squeeze damping with shear damping, high Qs (189 in water and 77 in human whole blood) are obtained in semi-infinite depth liquids. The C-FBAR sensors are characterized by aptamer - thrombin binding pairs and aqueous glycerine solutions for mass and viscosity sensing schemes, respectively. The C-FBAR sensor demonstrates accurate viscosity measurement from 1 to 10 centipoise, and can be deployed to monitor in-vitro blood coagulation processes in real time. Results show that its resonant frequency decreases as the viscosity of the blood increases during the fibrin generation process after the coagulation cascade. The coagulation time and the start/end of the fibrin generation are quantitatively determined, showing the C-FBAR can be a low-cost, portable yet reliable tool for hemostasis diagnostics.

Book Fabrication  Development and Analysis of Film Bulk Acoustic Resonators on Flexible Polymer Substrates

Download or read book Fabrication Development and Analysis of Film Bulk Acoustic Resonators on Flexible Polymer Substrates written by Ghazal Hakemi and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: It is the focus of this project to explore the possibility of achieving Radio Fre?quency (RF) micro-devices on flexible polymer substrates. To this end standard MEMS fabrication methods have been tailored to allow the integration of func?tional materials and device patterning for production of RF MEMS devices with flexible organic substrates. Material quality, device yield, performance and re-liability are critical aspects of our study. The project encompasses the use of a direct integration method for the creation of Film Bulk Acoustic Resonators (FBARs) on Liquid Crystal Polymer (LCP) substrates. An FBAR is a passive component used for resonance and filtering purposes. Its production on organic substrates would lead to a number of ad-vantages including: overall cost savings, size reduction and ability of the device to be directly integrated on the printed circuit board (PCB) front-end with the other essential components (i.e. antenna) without the use of wiring and inter-connections. New fabrication process flows have been developed to allow the creation of FBAR microwave devices on LCP. First of all pre-processing of the polymer substrate is carried out to make it rigid and smooth. Substrate smoothness and stiffness are necessary in order to obtain functioning devices and for the substrate to comply to the standard fabrication methods. Rigidity is achieved through a backing method whereby silicon or glass are attached to LCP with an intermediate adhesive layer. The best way to achieve smoothness was found to be Chemical Mechanical Polishing (CMP). Standard fabrication techniques were then employed to deposit the metal and piezoelectric material and pattern them. Both bulk and surface micromachining were used and, in some cases, tailored to suit the new substrates (LCP) tolerance limits (such as temperature and flexibility). Zinc Oxide (ZnO) piezoelectric is the preferred functional material and it is chosen due to its relatively low deposition temperature re?quirements (below 300C) and its high frequency characteristics. The creation of a front-to-back processed FBAR on LCP is successfully carried out at relatively low temperatures since the Zinc oxide (ZnO) functional mate?rial is proven to yield good crystallinity at a deposition temperature of 100C and also because micromachining temperatures do not generally exceed 115C. The final device is characterized through RF measurements, compared with sim?ulations and standard FBARs and the polymer/ceramic integration reliability for device creation is briefly addressed. In conclusion FBARs are successfully created on LCP with only minor compli?cations related to LCP surface roughness and RIE etch of the polymer. The project lays promising prospects for RF MEMS devices on compliant organic substrates.

Book Intelligent Systems Design and Applications

Download or read book Intelligent Systems Design and Applications written by Ajith Abraham and published by Springer Nature. This book was released on with total page 523 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Thin film Bulk Acoustic Wave Resonators  FBAR

Download or read book Thin film Bulk Acoustic Wave Resonators FBAR written by Humberto Campanella Pineda and published by . This book was released on 2008 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Dual Mode Thin Film Bulk Acoustic Resonators  FBARs  Based on AlN  ZnO and GaN Films with Tilted C Axis Orientation

Download or read book Dual Mode Thin Film Bulk Acoustic Resonators FBARs Based on AlN ZnO and GaN Films with Tilted C Axis Orientation written by and published by . This book was released on 2010 with total page 91 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thin film bulk acoustic wave resonators (FBAR) using piezoelectric AlN, ZnO and GaN thin films have attracted extensive research activities in the past years. Highly c-axis oriented (normal-plane orientation) binary semiconductor piezoelectric thin films are particularly investigated for resonators operating at the fundamental thickness longitudinal mode. Depending on the processing conditions, tilted polarization (c-axis off the normal direction to the substrate surface) is often found in the as-deposited piezoelectric thin films, which leads to the coexistence of thickness longitudinal mode and shear mode for the thin film resonators.

Book Electromagnetics of Body Area Networks

Download or read book Electromagnetics of Body Area Networks written by Douglas H. Werner and published by John Wiley & Sons. This book was released on 2016-07-20 with total page 644 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is a comprehensive treatment of the field, covering fundamental theoretical principles and new technological advancements, state-of-the-art device design, and reviewing examples encompassing a wide range of related sub-areas. In particular, the first area focuses on the recent development of novel wearable and implantable antenna concepts and designs including metamaterial-based wearable antennas, microwave circuit integrated wearable filtering antennas, and textile and/or fabric material enabled wearable antennas. The second set of topics covers advanced wireless propagation and the associated statistical models for on-body, in-body, and off-body modes. Other sub-areas such as efficient numerical human body modeling techniques, artificial phantom synthesis and fabrication, as well as low-power RF integrated circuits and related sensor technology are also discussed. These topics have been carefully selected for their transformational impact on the next generation of body-area network systems and beyond.

Book Processing of Thin Film Bulk Acoustic Resonators

Download or read book Processing of Thin Film Bulk Acoustic Resonators written by Masaaki Imura and published by . This book was released on 2001 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Efficient Sensor Interfaces  Advanced Amplifiers and Low Power RF Systems

Download or read book Efficient Sensor Interfaces Advanced Amplifiers and Low Power RF Systems written by Kofi A.A. Makinwa and published by Springer. This book was released on 2015-08-28 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is based on the 18 tutorials presented during the 24th workshop on Advances in Analog Circuit Design. Expert designers present readers with information about a variety of topics at the frontier of analog circuit design, including low-power and energy-efficient analog electronics, with specific contributions focusing on the design of efficient sensor interfaces and low-power RF systems. This book serves as a valuable reference to the state-of-the-art, for anyone involved in analog circuit research and development.

Book Simulation and Fabrication of Thin Film Bulk Acoustic Wave Resonator Project Supported by the National Natural Science Foundation of China  Nos  61274119  61306141  61335008  and the Natural Science Foundation of Jiangsu Province  No  BK20131099

Download or read book Simulation and Fabrication of Thin Film Bulk Acoustic Wave Resonator Project Supported by the National Natural Science Foundation of China Nos 61274119 61306141 61335008 and the Natural Science Foundation of Jiangsu Province No BK20131099 written by and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: In this paper, we present the simulation and fabrication of a thin film bulk acoustic resonator (FBAR). In order to improve the accuracy of simulation, an improved Mason model was introduced to design the resonator by taking the coupling effect between electrode and substrate into consideration. The resonators were fabricated by the eight inch CMOS process, and the measurements show that the improved Mason model is more accurate than a simple Mason model. The Q s ( Q at series resonance), Q p ( Q at parallel resonance), Q max and k t 2 of the FBAR were measured to be 695, 814, 1049, and 7.01% respectively, showing better performance than previous reports.

Book New Piezoelectric Materials and Devices  Fabrication  Structures  and Applications

Download or read book New Piezoelectric Materials and Devices Fabrication Structures and Applications written by Chunlong Fei and published by Frontiers Media SA. This book was released on 2022-02-15 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Thin film Bulk Acoustic Resonators for Biomolecular Interaction Analysis

Download or read book Thin film Bulk Acoustic Resonators for Biomolecular Interaction Analysis written by Martin Nirschl and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: