EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Multi scale Modeling of Two phase Flow in Porous Media Including Capillary Pressure Effects

Download or read book Multi scale Modeling of Two phase Flow in Porous Media Including Capillary Pressure Effects written by Markus Wolff and published by . This book was released on 2013 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Upscaling Multiphase Flow in Porous Media

Download or read book Upscaling Multiphase Flow in Porous Media written by D.B. Das and published by Springer Science & Business Media. This book was released on 2005-12-05 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides concise, up-to-date and easy-to-follow information on certain aspects of an ever important research area: multiphase flow in porous media. This flow type is of great significance in many petroleum and environmental engineering problems, such as in secondary and tertiary oil recovery, subsurface remediation and CO2 sequestration. This book contains a collection of selected papers (all refereed) from a number of well-known experts on multiphase flow. The papers describe both recent and state-of-the-art modeling and experimental techniques for study of multiphase flow phenomena in porous media. Specifically, the book analyses three advanced topics: upscaling, pore-scale modeling, and dynamic effects in multiphase flow in porous media. This will be an invaluable reference for the development of new theories and computer-based modeling techniques for solving realistic multiphase flow problems. Part of this book has already been published in a journal. Audience This book will be of interest to academics, researchers and consultants working in the area of flow in porous media.

Book Simulation of Flow in Porous Media

Download or read book Simulation of Flow in Porous Media written by Peter Bastian and published by Walter de Gruyter. This book was released on 2013-07-31 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Subsurface flow problems are inherently multiscale in space due to the large variability of material properties and in time due to the coupling of many different physical processes, such as advection, diffusion, reaction and phase exchange. Subsurface flow models still need considerable development. For example, nonequilibrium effects, entrapped air, anomalous dispersion and hysteresis effects can still not be adequately described. Moreover, parameters of the models are diffcult to access and often uncertain. Computational issues in subsurface flows include the treatment of strong heterogeneities and anisotropies in the models, the effcient solution of transport-reaction problems with many species, treatment of multiphase-multicomponent flows and the coupling of subsurface flow models to surface flow models given by shallow water or Stokes equations. With respect to energy and the environment, in particular the modelling and simulation of radioactive waste management and sequestration of CO2 underground have gained high interest in the community in recent years. Both applications provide unique challenges ranging from modelling of clay materials to treating very large scale models with high-performance computing. This book brings together key numerical mathematicians whose interest is in the analysis and computation of multiscale subsurface flow and practitioners from engineering and industry whose interest is in the applications of these core problems.

Book Multiphase Flow in Permeable Media

Download or read book Multiphase Flow in Permeable Media written by Martin J. Blunt and published by Cambridge University Press. This book was released on 2017-02-16 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a fundamental description of multiphase fluid flow through porous rock, based on understanding movement at the pore, or microscopic, scale.

Book Mathematical Modeling for Flow and Transport Through Porous Media

Download or read book Mathematical Modeling for Flow and Transport Through Porous Media written by Gedeon Dagan and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main aim of this paper is to present some new and general results, ap plicable to the the equations of two phase flow, as formulated in geothermal reservoir engineering. Two phase regions are important in many geothermal reservoirs, especially at depths of order several hundred metres, where ris ing, essentially isothermal single phase liquid first begins to boil. The fluid then continues to rise, with its temperature and pressure closely following the saturation (boiling) curve appropriate to the fluid composition. Perhaps the two most interesting theoretical aspects of the (idealised) two phase flow equations in geothermal reservoir engineering are that firstly, only one component (water) is involved; and secondly, that the densities of the two phases are so different. This has led to the approximation of ignoring capillary pressure. The main aim of this paper is to analyse some of the consequences of this assumption, especially in relation to saturation changes within a uniform porous medium. A general analytic treatment of three dimensional flow is considered. Pre viously, three dimensional modelling in geothermal reservoirs have relied on numerical simulators. In contrast, most of the past analytic work has been restricted to one dimensional examples.

Book Modeling Transport Phenomena in Porous Media with Applications

Download or read book Modeling Transport Phenomena in Porous Media with Applications written by Malay K. Das and published by Springer. This book was released on 2017-11-21 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an ensemble of six major chapters, an introduction, and a closure on modeling transport phenomena in porous media with applications. Two of the six chapters explain the underlying theories, whereas the rest focus on new applications. Porous media transport is essentially a multi-scale process. Accordingly, the related theory described in the second and third chapters covers both continuum‐ and meso‐scale phenomena. Examining the continuum formulation imparts rigor to the empirical porous media models, while the mesoscopic model focuses on the physical processes within the pores. Porous media models are discussed in the context of a few important engineering applications. These include biomedical problems, gas hydrate reservoirs, regenerators, and fuel cells. The discussion reveals the strengths and weaknesses of existing models as well as future research directions.

Book Pore  to continuum Multiscale Modeling of Two phase Flow in Porous Media

Download or read book Pore to continuum Multiscale Modeling of Two phase Flow in Porous Media written by Qiang Sheng and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Multiphase Flow in Porous Media

Download or read book Multiphase Flow in Porous Media written by P.M. Adler and published by Springer Science & Business Media. This book was released on 2013-11-27 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of multiphase flow through porous media is undergoing intense development, mostly due to the recent introduction of new methods. After the profound changes induced by percolation in the eighties, attention is nowadays focused on the pore scale. The physical situation is complex and only recently have tools become available that allow significant progress to be made in the area. This volume on Multiphase Flow in Porous Media, which is also being published as a special issue of the journal Transport in Porous Media, contains contributions on the lattice-Boltzmann technique, the renormalization technique, and semi-phenomenological studies at the pore level. Attention is mostly focused on two- and three-phase flows. These techniques are of tremendous importance for the numerous applications of multiphase flows in oil fields, unsaturated soils, the chemical industry, and environmental sciences.

Book Pore Scale Modeling of Multiphase Flow in Heterogeneously Wet Media

Download or read book Pore Scale Modeling of Multiphase Flow in Heterogeneously Wet Media written by Rahul Verma (Ph. D. in petroleum engineering) and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pore scale simulation has recently become an important tool for understanding multiphase flow behavior in porous materials. It enables detailed mechanistic studies of upscaled flow parameters such as capillary-pressure saturation curves, residual saturation of each phase, and relative permeability. However, direct modeling of multiphase flow given the complex solid surfaces in a porous medium is a non-trivial problem. In this work, we develop a new quasi-static, variational level set formulation capable of handling trapped phases as well as wettability. We extend our previous work [1, 2] for simple geometries, and develop a new parallelized code enabling application of the method in larger geometries. We compare our model results against several experimental and semi-analytical datasets. The model is first applied to both homogeneous and heterogeneously wet rhomboidal pores, and compared against semi-analytical solutions derived by Mason and Morrow [3]. Subsequently, we focus on a quasi-2D micromodel study of fluid-fluid displacement for different wettabilities, which is quantified using the displacement efficiency and fractal dimension of the displacement patterns [4]. We then study classic experiments by Haines [5] and Leverett [6] for measuring the capillary pressure and relative permeability curves in sphere packs and sandpacks, respectively. We match trends in trapping in sandpacks during drainage/imbibition experiments by Pentland et al. [7], and also compare it against predictions by several other pore-scale models. Finally, we confirm the pore-scale hypothesis suggested by DiCarlo et al. [8] for explaining experimental observations of three-phase relative permeability of the intermediate-wet phase in sandpack experiments. For these three-phase experiments, we propose an approximation based on finding phases trapped between constant curvature surfaces, using two-phase simulations. We demonstrate the versatility of our methods by applying it to these disparate experimental datasets, and suggest future applications of our work

Book Porous Media

Download or read book Porous Media written by F. A.L. Dullien and published by Academic Press. This book was released on 2012-12-02 with total page 598 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines the relationship between transport properties and pore structure of porous material. Models of pore structure are presented with a discussion of how such models can be used to predict the transport properties of porous media. Portions of the book are devoted to interpretations of experimental results in this area and directions for future research. Practical applications are given where applicable, and are expected to be useful for a large number of different fields, including reservoir engineering, geology, hydrogeology, soil science, chemical process engineering, biomedical engineering, fuel technology, hydrometallurgy, nuclear reactor technology, and materials science. Presents mechanisms of immiscible and miscible displacement (hydrodynamic dispersion) process in porous media Examines relationships between pore structure and fluid transport Considers approaches to enhanced oil recovery Explores network modeling and perolation theory

Book An Introduction to Reservoir Simulation Using MATLAB GNU Octave

Download or read book An Introduction to Reservoir Simulation Using MATLAB GNU Octave written by Knut-Andreas Lie and published by Cambridge University Press. This book was released on 2019-08-08 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents numerical methods for reservoir simulation, with efficient implementation and examples using widely-used online open-source code, for researchers, professionals and advanced students. This title is also available as Open Access on Cambridge Core.

Book Fractured Porous Media

    Book Details:
  • Author : Pierre M. Adler
  • Publisher : Oxford University Press, USA
  • Release : 2013
  • ISBN : 0199666512
  • Pages : 184 pages

Download or read book Fractured Porous Media written by Pierre M. Adler and published by Oxford University Press, USA. This book was released on 2013 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a systematic treatment of the geometrical and transport properties of fractures, fracture networks, and fractured porous media. It is divided into two major parts. The first part deals with geometry of individual fractures and of fracture networks. The use of the dimensionless density rationalizes the results for the percolation threshold of the networks. It presents the crucial advantage of grouping the numerical data for various fracture shapes. The second part deals mainly with permeability under steady conditions of fractures, fracture networks, and fractured porous media. Again the results for various types of networks can be rationalized by means of the dimensionless density. A chapter is dedicated to two phase flow in fractured porous media.

Book Flow in Porous Rocks

Download or read book Flow in Porous Rocks written by Andrew W. Woods and published by Cambridge University Press. This book was released on 2015 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides simplified models explaining flows in heterogeneous rocks, their physics and energy production processes, for researchers, energy industry professionals and graduate students.

Book Wicking in Porous Materials

Download or read book Wicking in Porous Materials written by Reza Masoodi and published by CRC Press. This book was released on 2012-10-26 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive presentation of wicking models developed in academia and industry, Wicking in Porous Materials: Traditional and Modern Modeling Approaches contains some of the most important approaches and methods available, from the traditional Washburn-type models to the latest Lattice-Boltzmann approaches developed during the last few years. It provides a sound conceptual framework for learning the science behind different mathematical models while at the same time being aware of the practical issues of model validation as well as measurement of important properties and parameters associated with various models. Top experts in the field reveal the secrets of their wicking models. The chapters cover the following topics: Wetting and wettability Darcy’s law for single- and multi-phase flows Traditional capillary models, such as the Washburn-equation based approaches Unsaturated-flow based methodologies (Richard’s Equation) Sharp-front (plug-flow) type approaches using Darcy’s law Pore network models for wicking after including various micro-scale fluid-flow phenomena Studying the effect of evaporation on wicking using pore network models Fractal-based methods Modeling methods based on mixture theory Lattice-Boltzmann method for modeling wicking in small scales Modeling wicking in swelling and non-rigid porous media This extensive look at the modeling of porous media compares various methods and treats traditional topics as well as modern technologies. It emphasizes experimental validation of modeling approaches as well as experimental determination of model parameters. Matching models to particular media, the book provides guidance on what models to use and how to use them.

Book Pore scale Percolation Modeling of Two phase Flow in Granular Porous Media

Download or read book Pore scale Percolation Modeling of Two phase Flow in Granular Porous Media written by Tyson Strand and published by . This book was released on 2003 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Multiphase Lattice Boltzmann Methods

Download or read book Multiphase Lattice Boltzmann Methods written by Haibo Huang and published by John Wiley & Sons. This book was released on 2015-06-08 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theory and Application of Multiphase Lattice Boltzmann Methods presents a comprehensive review of all popular multiphase Lattice Boltzmann Methods developed thus far and is aimed at researchers and practitioners within relevant Earth Science disciplines as well as Petroleum, Chemical, Mechanical and Geological Engineering. Clearly structured throughout, this book will be an invaluable reference on the current state of all popular multiphase Lattice Boltzmann Methods (LBMs). The advantages and disadvantages of each model are presented in an accessible manner to enable the reader to choose the model most suitable for the problems they are interested in. The book is targeted at graduate students and researchers who plan to investigate multiphase flows using LBMs. Throughout the text most of the popular multiphase LBMs are analyzed both theoretically and through numerical simulation. The authors present many of the mathematical derivations of the models in greater detail than is currently found in the existing literature. The approach to understanding and classifying the various models is principally based on simulation compared against analytical and observational results and discovery of undesirable terms in the derived macroscopic equations and sometimes their correction. A repository of FORTRAN codes for multiphase LBM models is also provided.

Book Multiscale Direct Numerical Modeling of Pore scale and Darcy scale Multiphase Flow in Porous Media

Download or read book Multiscale Direct Numerical Modeling of Pore scale and Darcy scale Multiphase Flow in Porous Media written by Soheil Esmaeilzadeh and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Improving our understanding about the evolution of multiphase flow in porous media is crucial for many applications such as extraction of hydrocarbons and geothermal energy from subsurface reservoirs, ground-water remediation, CO2 capture and storage, and transport of contaminants in aquifers and soil. Although such applications have implications at very large length scales, e.g., in the orders of kilometers, they strongly depend on the complex physics and dynamics that mainly occur at the pore-scale. Studying multiphase flow at the pore-scale using direct numerical modeling requires developing accurate numerical frameworks that not only honor conservation laws of mass, momentum, and energy, but also can precisely represent and track fluid-fluid interfaces in space and time in the presence of complex embedded solid geometries. In this dissertation, we consider incompressible and immiscible two-phase flows under isothermal conditions and in electrokinetic equilibrium. We solve for the conservation of mass and momentum, and using an immersed boundary approach account for the presence of embedded solid boundaries. We use a two-phase flow modeling approach based on the level-set method to capture the interfacial dynamics of the flow. Using our numerical framework, we first validate recent experimental works on phase separation in the form of pinch-off at the pore-scale, then we extend such experimental observations to a wide range of wettability conditions. For the phase separation in the form of pinch-off, we provide a quantitative study of the emerging length and time scales and their dependence on the wettability conditions, capillary effects, and viscous forces. Afterward, we present a subgrid thin-film model in order to resolve the interfacial dynamics of thin-films on curved solid surfaces in porous media. We couple a Navier-Stokes solver with a topology-preserving level-set method and a sub-grid thin-film model in order to simulate immiscible two-phase pore-scale flows in the presence of thin-films on curved solid surfaces. We validate our proposed subgrid thin-film model for the cases of static and dynamic fluid-fluid interfaces in capillary tubes (both drainage and imbibition) in the presence of curved solid surfaces. We compare the thin-film profile obtained by the subgrid thin-film model versus the profile numerically resolved by refined computational grid cells spanning the subgrid resolution of the thin-film and achieve a great agreement. Subsequently, we consider granular porous media with homogeneous and heterogeneous wettability conditions. We investigate the influence of capillary and viscous forces as well as wettability conditions on the interfacial dynamics, displacement efficiency, phase trapping phenomenon, and interfacial instabilities. For the heterogeneous wettability conditions, we consider granular media with mixed-wet conditions as well as fractional (patterned) wettability conditions. Finally, at the end of this dissertation, we present a physics-constrained super-resolution framework that can super-resolve numerical simulation data in both space and time. We test the robustness of our proposed super-resolution framework for super-resolving simulation data obtained for a turbulent flow case of Rayleigh-Bénard convection problem as well as a case of two-phase flow interfacial dynamics in porous media for a subsurface reservoir.