Download or read book Modeling and Simulation of Heterogeneous Catalytic Reactions written by Olaf Deutschmann and published by John Wiley & Sons. This book was released on 2013-09-18 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Nobel Prize in Chemistry 2007 awarded to Gerhard Ertl for his groundbreaking studies in surface chemistry highlighted the importance of heterogeneous catalysis not only for modern chemical industry but also for environmental protection. Heterogeneous catalysis is seen as one of the key technologies which could solve the challenges associated with the increasing diversification of raw materials and energy sources. It is the decisive step in most chemical industry processes, a major method of reducing pollutant emissions from mobile sources and is present in fuel cells to produce electricity. The increasing power of computers over the last decades has led to modeling and numerical simulation becoming valuable tools in heterogeneous catalysis. This book covers many aspects, from the state-of-the-art in modeling and simulations of heterogeneous catalytic reactions on a molecular level to heterogeneous catalytic reactions from an engineering perspective. This first book on the topic conveys expert knowledge from surface science to both chemists and engineers interested in heterogeneous catalysis. The well-known and international authors comprehensively present many aspects of the wide bridge between surface science and catalytic technologies, including DFT calculations, reaction dynamics on surfaces, Monte Carlo simulations, heterogeneous reaction rates, reactions in porous media, electro-catalytic reactions, technical reactors, and perspectives of chemical and automobile industry on modeling heterogeneous catalysis. The result is a one-stop reference for theoretical and physical chemists, catalysis researchers, materials scientists, chemical engineers, and chemists in industry who would like to broaden their horizon and get a substantial overview on the different aspects of modeling and simulation of heterogeneous catalytic reactions.
Download or read book Concepts of Modern Catalysis and Kinetics written by I. Chorkendorff and published by John Wiley & Sons. This book was released on 2006-03-06 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: Until now, the literature has offered a rather limited approach to the use of fundamental kinetics and their application to catalytic reactions. Subsequently, this book spans the full range from fundamentals of kinetics and heterogeneous catalysis via modern experimental and theoretical results of model studies to their equivalent large-scale industrial production processes. The result is key knowledge for students at technical universities and professionals already working in industry. '... such an enterprise will be of great value to the community, to professionals as well as graduate and undergraduate students attempting to move into the field of modern catalysis and kinetics. I strongly recommend you publish this book based on the proposal.' - Prof. Dr. G. A. Samorjai, University of California 'Both authors are well respected specialists, with a very long record of original top-quality work and an international reputation. A book from these authors will be considered an authoritative piece of work, I definitely support this project and I am looking forward to use the book when published.' - Prof. Dr. D. E. Resasco, University of Oklahoma 'I wholly support the proposed project. The authors are very competent young colleagues and there is a real need for such a textbook' - Prof. Dr. G. Ertl, Fritz-Haber-Institut, Max-Planck-Gesellschaft, Berlin
Download or read book Preparation of Catalysts VII written by R. Maggi and published by Elsevier. This book was released on 1998-08-17 with total page 1007 pages. Available in PDF, EPUB and Kindle. Book excerpt: The proceedings of the VIIth International Symposium on the Scientific Bases for the Preparation of Heterogeneous Catalysts, are in line with the general scope of this series of events. Emphasis in all Symposia has been on the scientific aspects of the preparation of new and industrial catalysts, or on new methods of preparation, rather than on the catalytic reactions in which such solids are ultimately used. In the present context, the catalytic event itself has only been considered as another, though often decisive, method of catalyst characterization.
Download or read book Theory and Applications of Monte Carlo Simulations written by Wai Kin (Victor) Chan and published by BoD – Books on Demand. This book was released on 2013-03-06 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to introduce researchers and practitioners to recent advances and applications of Monte Carlo Simulation (MCS). Random sampling is the key of the MCS technique. The 11 chapters of this book collectively illustrates how such a sampling technique is exploited to solve difficult problems or analyze complex systems in various engineering and science domains. Issues related to the use of MCS including goodness-of-fit, uncertainty evaluation, variance reduction, optimization, and statistical estimation are discussed and examples of solutions are given. Novel applications of MCS are demonstrated in financial systems modeling, estimation of transition behavior of organic molecules, chemical reaction, particle diffusion, kinetic simulation of biophysics and biological data, and healthcare practices. To enlarge the accessibility of this book, both field-specific background materials and field-specific usages of MCS are introduced in most chapters. The aim of this book is to unify knowledge of MCS from different fields to facilitate research and new applications of MCS.
Download or read book Catalysis and Electrocatalysis at Nanoparticle Surfaces written by Andrzej Wieckowski and published by CRC Press. This book was released on 2003-02-19 with total page 970 pages. Available in PDF, EPUB and Kindle. Book excerpt: Illustrating developments in electrochemical nanotechnology, heterogeneous catalysis, surface science and theoretical modelling, this reference describes the manipulation, characterization, control, and application of nanoparticles for enhanced catalytic activity and selectivity. It also offers experimental and synthetic strategies in nanoscale surface science. This standard-setting work clariefies several practical methods used to control the size, shape, crystal structure, and composition of nanoparticles; simulate metal-support interactions; predict nanoparticle behavior; enhance catalytic rates in gas phases; and examine catalytic functions on wet and dry surfaces.
Download or read book Computational Science ICCS 2001 written by Vassil N. Alexandrov and published by Springer. This book was released on 2003-05-15 with total page 1294 pages. Available in PDF, EPUB and Kindle. Book excerpt: LNCS volumes 2073 and 2074 contain the proceedings of the International Conference on Computational Science, ICCS 2001, held in San Francisco, California, May 27 -31, 2001. The two volumes consist of more than 230 contributed and invited papers that reflect the aims of the conference to bring together researchers and scientists from mathematics and computer science as basic computing disciplines, researchers from various application areas who are pioneering advanced application of computational methods to sciences such as physics, chemistry, life sciences, and engineering, arts and humanitarian fields, along with software developers and vendors, to discuss problems and solutions in the area, to identify new issues, and to shape future directions for research, as well as to help industrial users apply various advanced computational techniques.
Download or read book Multiscale Molecular Methods in Applied Chemistry written by Barbara Kirchner and published by Springer Science & Business Media. This book was released on 2012-01-25 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: First-Principles-Based Multiscale, Multiparadigm Molecular Mechanics and Dynamics Methods for Describing Complex Chemical Processes, by A. Jaramillo-Botero, R. Nielsen, R. Abrol, J. Su, T. Pascal, J. Mueller and W. A. Goddard.- Dynamic QM/MM: A Hybrid Approach to Simulating Gas–Liquid Interactions, by S. Yockel and G. C. Schatz.- Multiscale Modelling in Computational Heterogeneous Catalysis, by F. J. Keil.- Real-World Predictions from Ab Initio Molecular Dynamics Simulations, by B. Kirchner, P. J. di Dio and J. Hutter.- Nanoscale Wetting Under Electric Field from Molecular Simulations, by C. D. Daub, D. Bratko and A. Luzar.- Molecular Simulations of Retention in Chromatographic Systems: Use of Biased Monte Carlo Techniques to Access Multiple Time and Length Scales, by J. L. Rafferty, J. I. Siepmann, M. R. Schure.- Thermodynamic Properties for Applications in Chemical Industry via Classical Force Fields, by G. Guevara-Carrion, H. Hasse and J. Vrabec.- Multiscale Approaches and Perspectives to Modeling Aqueous Electrolytes and Polyelectrolytes, by L. Delle Site, C. Holm and N. F. A. van der Vegt.- Coarse-Grained Modeling for Macromolecular Chemistry, by H. A. Karimi-Varzaneh and F. Müller-Plathe.-
Download or read book Kinetic Models for a Diesel Oxidation Catalyst written by Stephen John Salomons and published by Stephen Salomons. This book was released on 2008 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Computational Modelling of Nanomaterials written by Panagiotis Grammatikopoulos and published by Elsevier. This book was released on 2020-09-30 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to their small size and their dependence on very fast phenomena, nanomaterials are ideal systems for computational modelling. This book provides an overview of various nanosystems classified by their dimensions: 0D (nanoparticles, QDs, etc.), 1D (nanowires, nanotubes), 2D (thin films, graphene, etc.), 3D (nanostructured bulk materials, devices). Fractal dimensions, such as nanoparticle agglomerates, percolating films and combinations of materials of different dimensionalities are also covered (e.g. epitaxial decoration of nanowires by nanoparticles, i.e. 0D+1D nanomaterials). For each class, the focus will be on growth, structure, and physical/chemical properties. The book presents a broad range of techniques, including density functional theory, molecular dynamics, non-equilibrium molecular dynamics, finite element modelling (FEM), numerical modelling and meso-scale modelling. The focus is on each method's relevance and suitability for the study of materials and phenomena in the nanoscale. This book is an important resource for understanding the mechanisms behind basic properties of nanomaterials, and the major techniques for computational modelling of nanomaterials. - Explores the major modelling techniques used for different classes of nanomaterial - Assesses the best modelling technique to use for each different type of nanomaterials - Discusses the challenges of using certain modelling techniques with specific nanomaterials
Download or read book Molecular Dynamics written by Perla Balbuena and published by Elsevier. This book was released on 1999-04-22 with total page 971 pages. Available in PDF, EPUB and Kindle. Book excerpt: The latest developments in quantum and classical molecular dynamics, related techniques, and their applications to several fields of science and engineering. Molecular simulations include a broad range of methodologies such as Monte Carlo, Brownian dynamics, lattice dynamics, and molecular dynamics (MD).Features of this book:• Presents advances in methodologies, introduces quantum methods and lists new techniques for classical MD• Deals with complex systems: biomolecules, aqueous solutions, ice and clathrates, liquid crystals, polymers• Provides chemical reactions, interfaces, catalysis, surface phenomena and solidsAlthough the book is not formally divided into methods and applications, the chapters are arranged starting with those that discuss new algorithms, methods and techniques, followed by several important applications.
Download or read book Plasma Catalysis written by Annemie Bogaerts and published by MDPI. This book was released on 2019-04-02 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: Plasma catalysis is gaining increasing interest for various gas conversion applications, such as CO2 conversion into value-added chemicals and fuels, N2 fixation for the synthesis of NH3 or NOx, methane conversion into higher hydrocarbons or oxygenates. It is also widely used for air pollution control (e.g., VOC remediation). Plasma catalysis allows thermodynamically difficult reactions to proceed at ambient pressure and temperature, due to activation of the gas molecules by energetic electrons created in the plasma. However, plasma is very reactive but not selective, and thus a catalyst is needed to improve the selectivity. In spite of the growing interest in plasma catalysis, the underlying mechanisms of the (possible) synergy between plasma and catalyst are not yet fully understood. Indeed, plasma catalysis is quite complicated, as the plasma will affect the catalyst and vice versa. Moreover, due to the reactive plasma environment, the most suitable catalysts will probably be different from thermal catalysts. More research is needed to better understand the plasma–catalyst interactions, in order to further improve the applications.
Download or read book Molecular Heterogeneous Catalysis written by Rutger A. van Santen and published by John Wiley & Sons. This book was released on 2009-06-10 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: An integrated approach to the molecular theory of reaction mechanism in heterogeneous catalysis, largely based on the knowledge among the growing theoretical catalysis community over the past half century, and covering all major catalytic systems. The authors develop a general conceptual framework, including in-depth comparisons with enzyme catalysis, biomineralisation, organometallic and coordination chemistry. A chapter dedicated to molecular electrocatalysis addresses the molecular description of reactions at the liquid-solid interphase, while studies range from a quantum-chemical treatment of individual molecular states to dynamic Monte-Carlo simulations, including the full flexibility of the many-particle systems. Complexity in catalysis is explained in chapters on self-organization and self-assembly of catalysts, and other sections are devoted to evolutionary, combinatorial techniques as well as artificial chemistry.
Download or read book Physics of Surface Interface and Cluster Catalysis written by Hideaki Kasai and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Physics of Surface, Interface and Cluster Catalysis reviews the fundamental physics of catalysis from simple surface models through to complex cluster and catalytic structures. It is the first book to provide a coherent collection of the physics of catalysis, and shows how physics has provided and continues to provide clarity and insight into many complex catalysis problems, reviewing both recent developments and prospects for future developments in the field.
Download or read book Modeling and Simulation of Heterogeneous Catalytic Processes written by and published by Academic Press. This book was released on 2014-09-22 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Heterogeneous catalysis and mathematical modeling are essential components of the continuing search for better utilization of raw materials and energy, with reduced impact on the environment. Numerical modeling of chemical systems has progressed rapidly due to increases in computer power, and is used extensively for analysis, design and development of catalytic reactors and processes. This book presents reviews of the state-of-the-art in modeling of heterogeneous catalytic reactors and processes. Reviews by leading authorities in the respective areas Up-to-date reviews of latest techniques in modeling of catalytic processes Mix of US and European authors, as well as academic/industrial/research institute perspectives Connections between computation and experimental methods in some of the chapters
Download or read book Chemically Reacting Flow written by Robert J. Kee and published by John Wiley & Sons. This book was released on 2005-02-18 with total page 884 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complex chemically reacting flow simulations are commonly employed to develop quantitative understanding and to optimize reaction conditions in systems such as combustion, catalysis, chemical vapor deposition, and other chemical processes. Although reaction conditions, geometries, and fluid flow can vary widely among the applications of chemically reacting flows, all applications share a need for accurate, detailed descriptions of the chemical kinetics occurring in the gas-phase or on reactive surfaces. Chemically Reacting Flow: Theory and Practice combines fundamental concepts in fluid mechanics and physical chemistry, assisting the student and practicing researcher in developing analytical and simulation skills that are useful and extendable for solving real-world engineering problems. The first several chapters introduce transport processes, primarily from a fluid-mechanics point of view, incorporating computational simulation from the outset. The middle section targets physical chemistry topics that are required to develop chemically reacting flow simulations, such as chemical thermodynamics, molecular transport, chemical rate theories, and reaction mechanisms. The final chapters deal with complex chemically reacting flow simulations, emphasizing combustion and materials processing. Among other features, Chemically Reacting Flow: Theory and Practice: -Advances a comprehensive approach to interweaving the fundamentals of chemical kinetics and fluid mechanics -Embraces computational simulation, equipping the reader with effective, practical tools for solving real-world problems -Emphasizes physical fundamentals, enabling the analyst to understand how reacting flow simulations achieve their results -Provides a valuable resource for scientists and engineers who use Chemkin or similar software Computer simulation of reactive systems is highly effective in the development, enhancement, and optimization of chemical processes. Chemically Reacting Flow helps prepare both students and professionals to take practical advantage of this powerful capability.
Download or read book Parallel and Distributed Scientific and Engineering Computing written by Yi Pan and published by Nova Publishers. This book was released on 2004 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the not too distant future, every researcher and professional in science and engineering fields will have to understand parallel and distributed computing. With hyperthreading in Intel processors, hypertransport links in AMD processors, multi-core silicon in today's high-end microprocessors from IBM and emerging cluster and grid computing, parallel and distributed computers have moved into the mainstream of computing. To fully exploit these advances in computer architectures, researchers and professionals must start to design parallel or distributed software, systems and algorithms for their scientific and engineering applications. Parallel and distributed scientific and engineering computing has become a key technology which will play an important part in determining, or at least shaping, future research and development activities in many academic and industrial branches. This book reports on the recent important advances in the area of parallel and distributed computing for science and engineering applications. Included in the book are selected papers from prestigious workshops such as PACT-SHPSEC, IPDPS-PDSECA and ICPP-HPSECA together with some invited papers from prominent researchers around the world. The book is basically divided into five main sections. These chapters not only provide novel ideas, new experimental results and handful experience in this field, but also stimulate the future research activities in the area of parallel and distributed computing for science and engineering applications.
Download or read book Numerical Modeling of Stagnation Flows over Porous Catalytic Surfaces written by Karadeniz, Hueseyin and published by KIT Scientific Publishing. This book was released on 2016-04-08 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, stagnation flows on a catalytic porous plate is modeled one-dimensionally coupled with multi-step surface reaction mechanisms and molecular transport (diffusion and conduction) in the flow field and in the porous catalyst. Internal and external mass transfer limitations as well as possible reaction routes in the catalyst are investigated for CO oxidation, WGS reaction, partial and steam reforming of methane over Rh/Al?O?.