EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Molecular Dynamics of Nanobiostructures

Download or read book Molecular Dynamics of Nanobiostructures written by Kholmirzo Kholmurodov and published by Nova Science Publishers. This book was released on 2012 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: A lot of discoveries in modern science and technology, in particular, recent progress in nanotechnologies, are inseparably linked with the use of computer molecular simulation methods. Today, molecular simulation is one of the basic instruments in exploring the properties of nano- and biostructures. Molecular simulation is a practical tool for the development of new materials and new drugs, as well as for performing large-scale calculations on molecular complexes of hundreds of thousands or multi-million particle systems. In this book, original papers are collected that demonstrate efficient uses of molecular dynamics (MD) simulation for studying nanoscale phenomena in a number of models from material and life sciences.

Book Molecular Dynamics of Nanobiostructures

Download or read book Molecular Dynamics of Nanobiostructures written by and published by . This book was released on 2012 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Molecular Dynamics of Nanostructures and Nanoionics

Download or read book Molecular Dynamics of Nanostructures and Nanoionics written by Junko Habasaki and published by CRC Press. This book was released on 2020-11-30 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanostructured materials with multiple components and complex structures are the current focus of research and are expected to develop further for material designs in many applications in electrochemical, colloidal, medical, pharmaceutical, and several other fields. This book discusses complex nanostructured systems exemplified by nanoporous silicates, spontaneously formed gels from silica-nanocolloidal solutions, and related systems, and examines them using molecular dynamics simulations. Nanoporous materials, nanocolloidal systems, and gels are useful in many applications and can be used in electric devices and storage, and for gas, ion, and drug delivery. The book gives an overview of the history, current status, and frontiers of the field. It also discusses the fundamental aspects related to the common behaviors of some of these systems and common analytical methods to treat them.

Book Molecular Nano Dynamics

Download or read book Molecular Nano Dynamics written by Hiroshi Fukumura and published by John Wiley & Sons. This book was released on 2009-09-09 with total page 740 pages. Available in PDF, EPUB and Kindle. Book excerpt: From artificial surfaces to living cells, Molecular Nano Dynamics, Vol. I and Vol. II explores more than 40 important methods for dynamic observation of the nanoscale. Edited by absolute science greats from Japan, this two-volume set covers all important aspects of this topic: nanoscale spectroscopy and characterization tools, nanostructure dynamics, single living cell dynamics, active surfaces, and single crystals. Destined to be the definitive reference work on nanoscale molecular dynamics and their observation for years to come, this is a must-have reference for chemists, physicists, physical chemists, theoretical chemists, and materials scientists.

Book Molecular Nano Dynamics  2 Volume Set

Download or read book Molecular Nano Dynamics 2 Volume Set written by Hiroshi Fukumura and published by Wiley-VCH. This book was released on 2009-11-02 with total page 740 pages. Available in PDF, EPUB and Kindle. Book excerpt: From artificial surfaces to living cells, Molecular Nano Dynamics, Vol. I and Vol. II explores more than 40 important methods for dynamic observation of the nanoscale. Edited by absolute science greats from Japan, this two-volume set covers all important aspects of this topic: nanoscale spectroscopy and characterization tools, nanostructure dynamics, single living cell dynamics, active surfaces, and single crystals. Destined to be the definitive reference work on nanoscale molecular dynamics and their observation for years to come, this is a must-have reference for chemists, physicists, physical chemists, theoretical chemists, and materials scientists.

Book Simulations in Nanobiotechnology

Download or read book Simulations in Nanobiotechnology written by Kilho Eom and published by CRC Press. This book was released on 2011-10-19 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: Until the late 20th century, computational studies of biomolecules and nanomaterials had considered the two subjects separately. A thorough presentation of state-of-the-art simulations for studying the nanoscale behavior of materials, Simulations in Nanobiotechnology discusses computational simulations of biomolecules and nanomaterials together. The book gives readers insight into not only the fundamentals of simulation-based characterizations in nanobiotechnology, but also in how to approach new and interesting problems in nanobiotechnology using basic theoretical and computational frameworks. Presenting the simulation-based nanoscale characterizations in biological science, Part 1: Describes recent efforts in MD simulation-based characterization and CG modeling of DNA and protein transport dynamics in the nanopore and nanochannel Presents recent advances made in continuum mechanics-based modeling of membrane proteins Summarizes theoretical frameworks along with atomistic simulations in single-molecule mechanics Provides the computational simulation-based mechanical characterization of protein materials Discussing advances in modeling techniques and their applications, Part 2: Describes advances in nature-inspired material design; atomistic simulation-based characterization of nanoparticles’ optical properties; and nanoparticle-based applications in therapeutics Overviews of the recent advances made in experiment and simulation-based characterizations of nanoscale adhesive properties Suggests theoretical frameworks with experimental efforts in the development of nanoresonators for future nanoscale device designs Delineates advances in theoretical and computational methods for understanding the mechanical behavior of a graphene monolayer The development of experimental apparatuses has paved the way to observing physics at the nanoscale and opened a new avenue in the fundamental understanding of the physics of various objects such as biological materials and nanomaterials. With expert contributors from around the world, this book addresses topics such as the molecular dynamics of protein translocation, coarse-grained modeling of CNT-DNA interactions, multi-scale modeling of nanowire resonator sensors, and the molecular dynamics simulation of protein mechanics. It demonstrates the broad application of models and simulations that require the use of principles from multiple academic disciplines.

Book Molecular Dynamics Study of Nano structures

Download or read book Molecular Dynamics Study of Nano structures written by Masoud Darvish Ganji and published by . This book was released on 2016-10-04 with total page 96 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Molecular Nano Dynamics  2 Volume Set

Download or read book Molecular Nano Dynamics 2 Volume Set written by Hiroshi Fukumura and published by Wiley-VCH. This book was released on 2009-11-02 with total page 740 pages. Available in PDF, EPUB and Kindle. Book excerpt: From artificial surfaces to living cells, Molecular Nano Dynamics, Vol. I and Vol. II explores more than 40 important methods for dynamic observation of the nanoscale. Edited by absolute science greats from Japan, this two-volume set covers all important aspects of this topic: nanoscale spectroscopy and characterization tools, nanostructure dynamics, single living cell dynamics, active surfaces, and single crystals. Destined to be the definitive reference work on nanoscale molecular dynamics and their observation for years to come, this is a must-have reference for chemists, physicists, physical chemists, theoretical chemists, and materials scientists.

Book Modeling of Nanotoxicity

Download or read book Modeling of Nanotoxicity written by Ruhong Zhou and published by Springer. This book was released on 2015-09-04 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive overview of the fundamentals of nanotoxicity modeling and its implications for the development of novel nanomedicines. It lays out the fundamentals of nanotoxicity modeling for an array of nanomaterial systems, ranging from carbon-based nanoparticles to noble metals, metal oxides, and quantum dots. The author illustrates how molecular (classical mechanics) and atomic (quantum mechanics) modeling approaches can be applied to bolster our understanding of many important aspects of this critical nanotoxicity issue. Each chapter is organized by types of nanomaterials for practicality, making this an ideal book for senior undergraduate students, graduate students, and researchers in nanotechnology, chemistry, physics, molecular biology, and computer science. It is also of interest to academic and industry professionals who work on nanodrug delivery and related biomedical applications, and aids readers in their biocompatibility assessment efforts in the coming age of nanotechnology. This book also provides a critical assessment of advanced molecular modeling and other computational techniques to nanosafety, and highlights current and future biomedical applications of nanoparticles in relation to nanosafety.

Book Study of Nano scale Systems Using Discontinuous Molecular Dynamics

Download or read book Study of Nano scale Systems Using Discontinuous Molecular Dynamics written by Juan Andres Torres and published by . This book was released on 1999 with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Molecular Modeling and Investigation of Ultrafast Dynamics in Nano systems

Download or read book Molecular Modeling and Investigation of Ultrafast Dynamics in Nano systems written by Jung Khadga Karki and published by . This book was released on 2011 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this PhD thesis, the results of molecular dynamics simulation studies of structural properties of nano-aggregates and experimental time-resolved spectroscopy studies of exciton dynamics in nano-structures of chromophores are presented. The OPLS force field parameters of chlorophyll a, astaxanthin (a carotenoid) and phenyltrimethoxysilane molecules are developed to study their structural, physical and thermodynamic properties in solution using classical molecular dynamics simulations. Simulations of chlorophyll a in different solvents show formation of monomeric, dimeric and multimeric structures in methanol, benzene and water, respectively. The structures of the aggregates show that different functional groups present in the ring of the molecule, hydrophobicity of the phytol tail and the water molecules coordinated to the Mg of the chlorin ring play important role in aggregation. Simulations of astaxanthin in water and ethanol mixtures show formation of aggregates in the mixtures in which the water content is more than 50\%. The results show that hydrophobicity of the conjugated chain in astaxanthin plays a major role in aggregation. Apart from the natural systems like light-harvesting complexes, chlorophylls and carotenoids also aggregate on surfaces. In light-harvesting complexes, the aggregation is controlled by proteins in such a way that the aggregates efficiently collect sunlight, which the plants use for photosynthesis. Such a controlled aggregation is also necessary to develop nano-antennas of these chromophores for artificial photosynthesis or other photovoltaic systems. One of the ways to control their aggregation in surfaces is to change the hydrophobicity of the surface. For this reason, a molecular model of the phenyltrimethoxysilane has been parameterized to model hydrophobic phenyl-functionalized inorganic surfaces like silica surface. Functioning of nano-assemblies of chromophores for photovoltaic application relies on formation of excitons, their motion, energy dissipation, charge separation, etc. that follow the absorption of photons. The processes like formation of excitons and charge separation are desirable while energy dissipation by vibrational relaxation are undesirable. In order to control aggregation such that the desirable functions are maximized, the different processes occurring in the nano-aggregates need to investigated. These processes, which occur in femto-second to pico-second timescales, can be studied using different techniques of time-resolved spectroscopy. However, the widely used techniques in time-resolved spectroscopy do not have spatial resolution high enough to study dynamics in individual nano-structures or nano-meter or sub-nanometer thin layers of chromophores. The experimental work presented here present the development and implementation of two techniques: near-field pump-probe technique to study the ultra-fast processes in nano-structures with 100 nm spatial resolution, and transient grating technique to study ultra-fast processes in few to sub-nanometer thin films of chromophores. Results of the investigation of exciton dynamics using the two techniques on 3,4,9,10 Perylenetetracarboxylic dianhydride show ultra-fast exciton annihilation and self-trapping of excitons at high exciton densities. The results also show that the pump-probe spectroscopy using the near field technique allows one to quantify the annihilation rate and diffusion constant of the excitons in nano-crystals. These techniques can also be used to investigate ultra-fast processes in the nano-structures of chlorophylls, carotenoids and their derivatives on functionalized surfaces.

Book A Molecular Dynamics Study of the Spreading of Nano droplets

Download or read book A Molecular Dynamics Study of the Spreading of Nano droplets written by and published by . This book was released on 2010 with total page 52 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Molecular Modeling and Investigation of Ultrafast Dynamics in Nano systems

Download or read book Molecular Modeling and Investigation of Ultrafast Dynamics in Nano systems written by Jung Khadga Karki and published by . This book was released on 2011 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this PhD thesis, the results of molecular dynamics simulation studies of structural properties of nano-aggregates and experimental time-resolved spectroscopy studies of exciton dynamics in nano-structures of chromophores are presented. The OPLS force field parameters of chlorophyll a, astaxanthin (a carotenoid) and phenyltrimethoxysilane molecules are developed to study their structural, physical and thermodynamic properties in solution using classical molecular dynamics simulations. Simulations of chlorophyll a in different solvents show formation of monomeric, dimeric and multimeric structures in methanol, benzene and water, respectively. The structures of the aggregates show that different functional groups present in the ring of the molecule, hydrophobicity of the phytol tail and the water molecules coordinated to the Mg of the chlorin ring play important role in aggregation. Simulations of astaxanthin in water and ethanol mixtures show formation of aggregates in the mixtures in which the water content is more than 50\%. The results show that hydrophobicity of the conjugated chain in astaxanthin plays a major role in aggregation. Apart from the natural systems like light-harvesting complexes, chlorophylls and carotenoids also aggregate on surfaces. In light-harvesting complexes, the aggregation is controlled by proteins in such a way that the aggregates efficiently collect sunlight, which the plants use for photosynthesis. Such a controlled aggregation is also necessary to develop nano-antennas of these chromophores for artificial photosynthesis or other photovoltaic systems. One of the ways to control their aggregation in surfaces is to change the hydrophobicity of the surface. For this reason, a molecular model of the phenyltrimethoxysilane has been parameterized to model hydrophobic phenyl-functionalized inorganic surfaces like silica surface. Functioning of nano-assemblies of chromophores for photovoltaic application relies on formation of excitons, their motion, energy dissipation, charge separation, etc. that follow the absorption of photons. The processes like formation of excitons and charge separation are desirable while energy dissipation by vibrational relaxation are undesirable. In order to control aggregation such that the desirable functions are maximized, the different processes occurring in the nano-aggregates need to investigated. These processes, which occur in femto-second to pico-second timescales, can be studied using different techniques of time-resolved spectroscopy. However, the widely used techniques in time-resolved spectroscopy do not have spatial resolution high enough to study dynamics in individual nano-structures or nano-meter or sub-nanometer thin layers of chromophores. The experimental work presented here present the development and implementation of two techniques: near-field pump-probe technique to study the ultra-fast processes in nano-structures with 100 nm spatial resolution, and transient grating technique to study ultra-fast processes in few to sub-nanometer thin films of chromophores. Results of the investigation of exciton dynamics using the two techniques on 3,4,9,10 Perylenetetracarboxylic dianhydride show ultra-fast exciton annihilation and self-trapping of excitons at high exciton densities. The results also show that the pump-probe spectroscopy using the near field technique allows one to quantify the annihilation rate and diffusion constant of the excitons in nano-crystals. These techniques can also be used to investigate ultra-fast processes in the nano-structures of chlorophylls, carotenoids and their derivatives on functionalized surfaces.

Book Nanostructure Design

    Book Details:
  • Author : Ehud Gazit
  • Publisher : Springer Science & Business Media
  • Release : 2008-08-05
  • ISBN : 9781934115350
  • Pages : 296 pages

Download or read book Nanostructure Design written by Ehud Gazit and published by Springer Science & Business Media. This book was released on 2008-08-05 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: As one of the fastest growing fields of research in the 21st century, nanotechnology is sure to have an enormous impact on many aspects of our lives. Nanostructure Design: Methods and Protocols serves as a major reference for theoretical and experimental considerations in the design of biological and bio-inspired building blocks, the physical characterization of the formed structures, and the development of their technical applications. The chapters contributed by leading experts are divided into two sections, the first of which covers experimental aspects of nanostructure design and the second delves into computational methods. As a volume of the highly successful Methods in Molecular BiologyTM series, this collection pulls together cutting-edge protocols, written in a step-by-step, readily reproducible format certain to guide researchers to the desired results. Comprehensive and essential, Nanostructure Design: Methods and Protocols uses biological principles and vehicles on design to aid scientists in the great challenges still ahead.

Book The Nanobiotechnology Handbook

Download or read book The Nanobiotechnology Handbook written by Yubing Xie and published by CRC Press. This book was released on 2012-11-16 with total page 692 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thorough overview of nanobiotechnology and its place in advances in applied science and engineering, The Nanobiotechnology Handbook combines contributions from physics, bioorganic and bioinorganic chemistry, molecular and cellular biology, materials science, and medicine as well as from mechanical, electrical, chemical, and biomedical engineering

Book Protein Nanoparticle Interactions

Download or read book Protein Nanoparticle Interactions written by Masoud Rahman and published by Springer Science & Business Media. This book was released on 2013-06-24 with total page 95 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, the fabrication of nanomaterials and exploration of their properties have attracted the attention of various scientific disciplines such as biology, physics, chemistry, and engineering. Although nanoparticulate systems are of significant interest in various scientific and technological areas, there is little known about the safety of these nanoscale objects. It has now been established that the surfaces of nanoparticles are immediately covered by biomolecules (e.g. proteins, ions, and enzymes) upon their entrance into a biological medium. This interaction with the biological medium modulates the surface of the nanoparticles, conferring a “biological identity” to their surfaces (referred to as a “corona”), which determines the subsequent cellular/tissue responses. The new interface between the nanoparticles and the biological medium/proteins, called “bio-nano interface,” has been very rarely studied in detail to date, though the interest in this topic is rapidly growing. In this book, the importance of the physiochemical characteristics of nanoparticles for the properties of the protein corona is discussed in detail, followed by comprehensive descriptions of the methods for assessing the protein-nanoparticle interactions. The advantages and limitations of available corona evaluation methods (e.g. spectroscopy methods, mass spectrometry, nuclear magnetic resonance, electron microscopy, X-ray crystallography, and differential centrifugal sedimentation) are examined in detail, followed by a discussion of the possibilities for enhancing the current methods and a call for new techniques. Moreover, the advantages and disadvantages of protein-nanoparticle interaction phenomena are explored and discussed, with a focus on the biological impacts.

Book Molecular Dynamics

Download or read book Molecular Dynamics written by Alexander Vakhrushev and published by . This book was released on 2018 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to a description of the modeling of nanosystems and a detailed exposition of the application of molecular dynamics methods to problems from various fields of technology: material science, the formation of composite molecular complexes, and transport of nanosystems. The research results of the modeling of various nanosystems are presented: soft supramolecular nanostructures, nanosized beams of single-crystal Cu, metallic nanosized crystals, drug delivery systems, and systems stabilized by hydrogen bonds. The information from this book will be useful for engineers, technologists, researchers, and postgraduate students interested in the study of the whole complex of computer simulation based on the concept of molecular dynamics methods for the task of designing and producing nanomaterials with controlled properties.