Download or read book Molecular Simulations and Biomembranes written by Mark S P Sansom and published by Royal Society of Chemistry. This book was released on 2010-08-01 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: The need for information in the understanding of membrane systems has been caused by three things - an increase in computer power; methodological developments and the recent expansion in the number of researchers working on it worldwide. However, there has been no up-to-date book that covers the application of simulation methods to membrane systems directly and this book fills an important void in the market. It provides a much needed update on the current methods and applications as well as highlighting recent advances in the way computer simulation can be applied to the field of membranes and membrane proteins. The objectives are to show how simulation methods can provide an important contribution to the understanding of these systems. The scope of the book is such that it covers simulation of membranes and membrane proteins, but also covers the more recent methodological developments such as coarse-grained molecular dynamics and multiscale approaches in systems biology. Applications embrace a range of biological processes including ion channel and transport proteins. The book is wide ranging with broad coverage and a strong coupling to experimental results wherever possible, including colour illustrations to highlight particular aspects of molecular structure. With an internationally respected list of authors, its publication is timely and it will prove indispensable to a large scientific readership.
Download or read book Biomembranes written by Robert B. Gennis and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: New textbooks at all levels of chemistry appear with great regularity. Some fields like basic biochemistry, organic reaction mechanisms, and chemical thermody namics are well represented by many excellent texts, and new or revised editions are published sufficiently often to keep up with progress in research. However, some areas of chemistry, especially many of those taught at the graduate level, suffer from a real lack of up-to-date textbooks. The most serious needs occur in fields that are rapidly changing. Textbooks in these subjects usually have to be written by scientists actually involved in the research which is advancing the field. It is not often easy to persuade such individuals to set time aside to help spread the knowledge they have accumulated. Our goal, in this series, is to pinpoint areas of chemistry where recent progress has outpaced what is covered in any available textbooks, and then seek out and persuade experts in these fields to produce relatively concise but instructive introductions to their fields. These should serve the needs of one semester or one quarter graduate courses in chemistry and biochemistry. In some cases, the availability of texts in active research areas should help stimulate the creation of new courses.
Download or read book Multiresponsive Behavior of Biomembranes and Giant Vesicles written by and published by Academic Press. This book was released on 2019-11-27 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomembranes consist of molecular bilayers with many lipid and protein components. The fluidity of these bilayers allows them to respond to different environmental cues by changing their local molecular composition as well as their shape and topology. On the nanometer scale, this multi-responsive behavior can be studied by molecular dynamics simulations, which provide both snapshots and movies of the bilayer conformations. The general conceptual framework for these simulations is provided by the theory of curvature elasticity. The latter theory also explains the behavior of giant vesicles as observed by optical microscopy on the micrometer scale. The present volume describes new insights as obtained from recent developments in analytical theory, computer simulations, and experimental approaches. The seven chapters of the volume are arranged in a bottom-up manner from smaller to larger scales. These chapters address the refined molecular dynamics and multiscale modeling of biomembranes, their morphological complexity and adhesion, the engulfment and endocytosis of nanoparticles, the fusion of giant unilamellar vesicles, as well as recent advances in microfluidic technology applied to model membranes. - Bridging the gap between lipid molecules and giant unilamellar vesicles (GUVs) - Integrated view obtained from analytical theory, computer simulations, and experimental observations - Multiresponsive behavior and morphological complexity of biomembranes
Download or read book Physics of Biological Membranes written by Patricia Bassereau and published by Springer. This book was released on 2018-12-30 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book mainly focuses on key aspects of biomembranes that have emerged over the past 15 years. It covers static and dynamic descriptions, as well as modeling for membrane organization and shape at the local and global (at the cell level) scale. It also discusses several new developments in non-equilibrium aspects that have not yet been covered elsewhere. Biological membranes are the seat of interactions between cells and the rest of the world, and internally, they are at the core of complex dynamic reorganizations and chemical reactions. Despite the long tradition of membrane research in biophysics, the physics of cell membranes as well as of biomimetic or synthetic membranes is a rapidly developing field. Though successful books have already been published on this topic over the past decades, none include the most recent advances. Additionally, in this domain, the traditional distinction between biological and physical approaches tends to blur. This book gathers the most recent advances in this area, and will benefit biologists and physicists alike.
Download or read book Structure and Dynamics of Membranes written by R. Lipowsky and published by Elsevier. This book was released on 1995-06-15 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first volume of the Handbook deals with the amazing world of biomembranes and lipid bilayers. Part A describes all aspects related to the morphology of these membranes, beginning with the complex architecture of biomembranes, continues with a description of the bizarre morphology of lipid bilayers and concludes with technological applications of these membranes. The first two chapters deal with biomembranes, providing an introduction to the membranes of eucaryotes and a description of the evolution of membranes. The following chapters are concerned with different aspects of lipids including the physical properties of model membranes composed of lipid-protein mixtures, lateralphase separation of lipids and proteins and measurement of lipid-protein bilayer diffusion. Other chapters deal with the flexibility of fluid bilayers, the closure of bilayers into vesicles which attain a large variety of different shapes, and applications of lipid vesicles and liposomes. Part B covers membrane adhesion, membrane fusion and the interaction of biomembranes withpolymer networks such as the cytoskeleton. The first two chapters of this part discuss the generic interactions of membranes from the conceptual point of view. The following two chapters summarize the experimental work on two different bilayer systems. The next chapter deals with the process ofcontact formation, focal bounding and macroscopic contacts between cells. The cytoskeleton within eucaryotic cells consists of a network of relatively stiff filaments of which three different types of filaments have been identified. As explained in the next chapter much has been recently learned aboutthe interaction of these filaments with the cell membrane. The final two chapters deal with membrane fusion.
Download or read book Advanced Diffusion Encoding Methods in MRI written by Daniel Topgaard and published by Royal Society of Chemistry. This book was released on 2020-08-17 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: The medical MRI community is by far the largest user of diffusion NMR techniques and this book captures the current surge of methods and provides a primary source to aid adoption in this field. There is a trend to adapting the more advanced diffusion encoding sequences developed by NMR researchers within the fields of porous media, chemical engineering, and colloid science to medical research. Recently published papers indicate great potential for improved diagnosis of the numerous pathological conditions associated with changes of tissue microstructure that are invisible to conventional diffusion MRI. This book disseminates these recent developments to the wider community of MRI researchers and clinicians. The chapters cover the theoretical basis, hardware and pulse sequences, data analysis and validation, and recent applications aimed at promoting further growth in the field. This is a fast moving field and chapters are written by key MRI scientists that have contributed to the successful translation of the advanced diffusion NMR methods to the context of medical MRI, from global locations.
Download or read book Characterization of Biological Membranes written by Mu-Ping Nieh and published by Walter de Gruyter GmbH & Co KG. This book was released on 2019-07-22 with total page 716 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of membranes has become of high importance in the fields of biology, pharmaceutical chemistry and medicine, since much of what happens in a cell or in a virus involves biological membranes. The current book is an excellent introduction to the area, which explains how modern analytical methods can be applied to study biological membranes and membrane proteins and the bioprocesses they are involved to.
Download or read book Computational Biochemistry and Biophysics written by Oren M. Becker and published by CRC Press. This book was released on 2001-02-09 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covering theoretical methods and computational techniques in biomolecular research, this book focuses on approaches for the treatment of macromolecules, including proteins, nucleic acids, and bilayer membranes. It uses concepts in free energy calculations, conformational analysis, reaction rates, and transition pathways to calculate and interpret b
Download or read book Molecular Biology of the Cell written by and published by . This book was released on 2002 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Protein Simulations written by Valerie Daggett and published by Elsevier. This book was released on 2003-11-26 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: Protein Simulation focuses on predicting how protein will act in vivo. These studies use computer analysis, computer modeling, and statistical probability to predict protein function.* Force Fields* Ligand Binding* Protein Membrane Simulation* Enzyme Dynamics* Protein Folding and unfolding simulations
Download or read book Mechanosensitive Ion Channels written by Andre Kamkin and published by Springer Science & Business Media. This book was released on 2007-10-06 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the latest data dealing with mechanosensitive channels research results. It was compiled by a group of internationally recognized scientists leading in the field of mechanosensitive ion channels or mechanically gated channels and signaling cascades research. Key problems of cell mechanobiology are also discussed. As a whole, the volume dwells on the major issues of mechanical stress influencing the ion channels and intracellular signaling pathways.
Download or read book Membrane Structural Biology written by Mary Luckey and published by Cambridge University Press. This book was released on 2014-02-24 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a strong foundation and a clear overview for students of membrane biology and an invaluable synthesis of cutting-edge research for working scientists. The text retains its clear and engaging style, providing a solid background in membrane biochemistry, while also incorporating the approaches of biophysics, genetics and cell biology to investigations of membrane structure, function and biogenesis to provide a unique overview of this fast-moving field. A wealth of new high resolution structures of membrane proteins are presented, including the Na/K pump and a receptor-G protein complex, offering exciting insights into how they function. All key tools of current membrane research are described, including detergents and model systems, bioinformatics, protein-folding methodology, crystallography and diffraction, and molecular modeling. This comprehensive and up-to-date text, emphasising the correlations between membrane research and human health, provides a solid foundation for all those working in this field.
Download or read book Thermal Biophysics of Membranes written by Thomas Heimburg and published by John Wiley & Sons. This book was released on 2008-02-08 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: An overview of recent experimental and theoretical developments in the field of the physics of membranes, including new insights from the past decade. The author uses classical thermal physics and physical chemistry to explain our current understanding of the membrane. He looks at domain and 'raft' formation, and discusses it in the context of thermal fluctuations that express themselves in heat capacity and elastic constants. Further topics are lipid-protein interactions, protein binding, and the effect of sterols and anesthetics. Many seemingly unrelated properties of membranes are shown to be intimately intertwined, leading for instance to a coupling between membrane state, domain formation and vesicular shape. This also applies to non-equilibrium phenomena like the propagation of density pulses during nerve activity. Also included is a discussion of the application of computer simulations on membranes. For both students and researchers of biophysics, biochemistry, physical chemistry, and soft matter physics.
Download or read book New Techniques for Studying Biomembranes written by Taylor & Francis Group and published by CRC Press. This book was released on 2021-12-13 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes methods used to investigate the function and distribution of lipids in membranes. Contributors present discoveries that have to do with lipid analysis and lipid interactions with other components of membranes, such as proteins, receptors, transporters and ion channels.
Download or read book The Membranes of Cells written by Philip Yeagle and published by . This book was released on 1993 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this new edition of The Membranes of Cells, all of the chapters have been updated, some have been completely rewritten, and a new chapter on receptors has been added. The book has been designed to provide both the student and researcher with a synthesis of information from a number of scientific disciplines to create a comprehensive view of the structure and function of the membranes of cells. The topics are treated in sufficient depth to provide an entry point to the more detailed literature needed by the researcher. Key Features * Introduces biologists to membrane structure and physical chemistry * Introduces biophysicists to biological membrane function * Provides a comprehensive view of cell membranes to students, either as a necessary background for other specialized disciplines or as an entry into the field of biological membrane research * Clarifies ambiguities in the field
Download or read book Membrane Protein Structure Determination written by Jean-Jacques Lacapère and published by Methods in Molecular Biology. This book was released on 2010-08-06 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: Membrane proteins, representing nearly 40% of all proteins, are key components of cells involved in many cellular processes, yet only a small number of their structures have been determined. Membrane Protein Structure Determination: Methods and Protocols presents many detailed techniques for membrane protein structure determination used today by bringing together contributions from top experts in the field. Divided into five convenient sections, the book covers various strategies to purify membrane proteins, approaches to get three dimensional crystals and solve the structure by x-ray diffraction, possibilities to gain structural information for a membrane protein using electron microscopy observations, recent advances in nuclear magnetic resonance (NMR), and molecular modelling strategies that can be used either to get membrane protein structures or to move from atomic structure to a dynamic understanding of a molecular functioning mechanism. Written in the highly successful Methods in Molecular BiologyTM series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Comprehensive and easy to use, Membrane Protein Structure Determination: Methods and Protocols serves as an ideal reference for scientists seeking to further our knowledge of these vital and versatile proteins as well as our overall understanding of the complicated world of cell biology.
Download or read book G Protein Coupled Receptor Dimers written by Katharine Herrick-Davis and published by Humana Press. This book was released on 2017-09-12 with total page 501 pages. Available in PDF, EPUB and Kindle. Book excerpt: G-protein-coupled receptors (GPCRs) are believed to be the largest family of membrane proteins involved in signal transduction and cellular responses. They dimerize (form a pair of macromolecules) with a wide variety of other receptors. The proposed book will provide a comprehensive overview of GPCR dimers, starting with a historical perspective and including, basic information about the different dimers, how they synthesize, their signaling properties, and the many diverse physiological processes in which they are involved. In addition to presenting information about healthy GPCR dimer activity, the book will also include a section on their pathology and therapeutic potentials.