EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Molecular Dynamics Simulation of Nanostructured Materials

Download or read book Molecular Dynamics Simulation of Nanostructured Materials written by Snehanshu Pal and published by CRC Press. This book was released on 2020-04-28 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molecular dynamics simulation is a significant technique to gain insight into the mechanical behavior of nanostructured (NS) materials and associated underlying deformation mechanisms at the atomic scale. The purpose of this book is to detect and correlate critically current achievements and properly assess the state of the art in the mechanical behavior study of NS material in the perspective of the atomic scale simulation of the deformation process. More precisely, the book aims to provide representative examples of mechanical behavior studies carried out using molecular dynamics simulations, which provide contributory research findings toward progress in the field of NS material technology.

Book Molecular Dynamics Simulation

Download or read book Molecular Dynamics Simulation written by Giovanni Ciccotti and published by MDPI. This book was released on 2018-10-08 with total page 627 pages. Available in PDF, EPUB and Kindle. Book excerpt: Printed Edition of the Special Issue Published in Entropy

Book Molecular Dynamics Simulation

Download or read book Molecular Dynamics Simulation written by Kun Zhou and published by Academic Press. This book was released on 2022-02-10 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molecular Dynamic Simulation: Fundamentals and Applications explains the basic principles of MD simulation and explores its recent developments and roles in advanced modeling approaches. The implementation of MD simulation and its application to various aspects of materials science and engineering including mechanical, thermal, mass transportation, and physical/chemical reaction problems are illustrated. Innovative modeling techniques that apply MD to explore the mechanics of typical nanomaterials and nanostructures and to characterize crystalline, amorphous, and liquid systems are also presented. The rich research experience of the authors in MD simulation will ensure that the readers are provided with both an in-depth understanding of MD simulation and clear technical guidance. - Provides a comprehensive overview of the underlying theories of molecular dynamics (MD) simulation - Presents application-based examples pertaining to a broad range of mechanical, thermal, and mass transport problems - Explores innovative modeling techniques for simulating typical nanomaterials and nanostructures and for characterizing crystalline, amorphous, and liquid systems

Book The Art of Molecular Dynamics Simulation

Download or read book The Art of Molecular Dynamics Simulation written by D. C. Rapaport and published by Cambridge University Press. This book was released on 2004-04 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: First time paperback of successful physics monograph. Copyright © Libri GmbH. All rights reserved.

Book Understanding Molecular Simulation

Download or read book Understanding Molecular Simulation written by Daan Frenkel and published by Elsevier. This book was released on 2001-10-19 with total page 661 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding Molecular Simulation: From Algorithms to Applications explains the physics behind the "recipes" of molecular simulation for materials science. Computer simulators are continuously confronted with questions concerning the choice of a particular technique for a given application. A wide variety of tools exist, so the choice of technique requires a good understanding of the basic principles. More importantly, such understanding may greatly improve the efficiency of a simulation program. The implementation of simulation methods is illustrated in pseudocodes and their practical use in the case studies used in the text. Since the first edition only five years ago, the simulation world has changed significantly -- current techniques have matured and new ones have appeared. This new edition deals with these new developments; in particular, there are sections on: - Transition path sampling and diffusive barrier crossing to simulaterare events - Dissipative particle dynamic as a course-grained simulation technique - Novel schemes to compute the long-ranged forces - Hamiltonian and non-Hamiltonian dynamics in the context constant-temperature and constant-pressure molecular dynamics simulations - Multiple-time step algorithms as an alternative for constraints - Defects in solids - The pruned-enriched Rosenbluth sampling, recoil-growth, and concerted rotations for complex molecules - Parallel tempering for glassy Hamiltonians Examples are included that highlight current applications and the codes of case studies are available on the World Wide Web. Several new examples have been added since the first edition to illustrate recent applications. Questions are included in this new edition. No prior knowledge of computer simulation is assumed.

Book Molecular Dynamics Simulation of Nanocomposites using BIOVIA Materials Studio  Lammps and Gromacs

Download or read book Molecular Dynamics Simulation of Nanocomposites using BIOVIA Materials Studio Lammps and Gromacs written by Sumit Sharma and published by Elsevier. This book was released on 2019-08-09 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molecular Dynamics Simulation of Nanocomposites using BIOVIA Materials Studio, Lammps and Gromacs presents the three major software packages used for the molecular dynamics simulation of nanocomposites. The book explains, in detail, how to use each of these packages, also providing real-world examples that show when each should be used. The latter two of these are open-source codes which can be used for modeling at no cost. Several case studies how each software package is used to predict various properties of nanocomposites, including metal-matrix, polymer-matrix and ceramic-matrix based nanocomposites. Properties explored include mechanical, thermal, optical and electrical properties. This is the first book that explores methodologies for using Materials Studio, Lammps and Gromacs in the same place. It will be beneficial for students, researchers and scientists working in the field of molecular dynamics simulation. - Gives a detailed explanation of basic commands and modules of Materials Studio, Lammps and Gromacs - Shows how Materials Studio, Lammps and Gromacs predict mechanical, thermal, electrical and optical properties of nanocomposites - Uses case studies to show which software should be used to solve a variety of nanoscale modeling problems

Book Molecular Dynamics for Materials Modeling

Download or read book Molecular Dynamics for Materials Modeling written by Snehanshu Pal and published by CRC Press. This book was released on 2024-03-27 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book focuses on the correlation of mechanical behavior with structural evaluation and the underlying mechanisms through molecular dynamics (MD) techniques using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) platform. It provides representative examples of deformation behavior studies carried out using MD simulations through the LAMMPS platform, which provide contributory research findings toward the field of material technology. It also gives a general idea about the architecture of the coding used in LAMMPS and basic information about the syntax. Features: Provides a fundamental understanding of molecular dynamics simulation through LAMMPS Includes training on how to write LAMMPS input file scripts Discusses basics of molecular dynamics and fundamentals of nanoscale deformation behavior Explores molecular statics and Monte Carlo simulation technique Reviews key syntax implemented during simulation runs in LAMMPS, along with their functions This book is focused on researchers and graduate students in materials science, metallurgy, and mechanical engineering.

Book Molecular Simulation on Cement Based Materials

Download or read book Molecular Simulation on Cement Based Materials written by Dongshuai Hou and published by Springer Nature. This book was released on 2019-09-26 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a number of studies on the molecular dynamics of cement-based materials. It introduces a practical molecular model of cement-hydrate, delineates the relationship between molecular structure and nanoscale properties, reveals the transport mechanism of cement-hydrate, and provides useful methods for material design. Based on the molecular model presented here, the book subsequently sheds light on nanotechnology applications in the design of construction and building materials. As such, it offers a valuable asset for researchers, scientists, and engineers in the field of construction and building materials.

Book A Practical Introduction to the Simulation of Molecular Systems

Download or read book A Practical Introduction to the Simulation of Molecular Systems written by Martin J. Field and published by Cambridge University Press. This book was released on 2007-07-19 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molecular simulation is a powerful tool in materials science, physics, chemistry and biomolecular fields. This updated edition provides a pragmatic introduction to a wide range of techniques for the simulation of molecular systems at the atomic level. The first part concentrates on methods for calculating the potential energy of a molecular system, with new chapters on quantum chemical, molecular mechanical and hybrid potential techniques. The second part describes methods examining conformational, dynamical and thermodynamical properties of systems, covering techniques including geometry-optimization, normal-mode analysis, molecular dynamics, and Monte Carlo simulation. Using Python, the second edition includes numerous examples and program modules for each simulation technique, allowing the reader to perform the calculations and appreciate the inherent difficulties involved in each. This is a valuable resource for researchers and graduate students wanting to know how to use atomic-scale molecular simulations. Supplementary material, including the program library and technical information, available through www.cambridge.org/9780521852524.

Book Molecular Simulations

Download or read book Molecular Simulations written by Saman Alavi and published by John Wiley & Sons. This book was released on 2020-06-29 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides hands-on knowledge enabling students of and researchers in chemistry, biology, and engineering to perform molecular simulations This book introduces the fundamentals of molecular simulations for a broad, practice-oriented audience and presents a thorough overview of the underlying concepts. It covers classical mechanics for many-molecule systems as well as force-field models in classical molecular dynamics; introduces probability concepts and statistical mechanics; and analyzes numerous simulation methods, techniques, and applications. Molecular Simulations: Fundamentals and Practice starts by covering Newton's equations, which form the basis of classical mechanics, then continues on to force-field methods for modelling potential energy surfaces. It gives an account of probability concepts before subsequently introducing readers to statistical and quantum mechanics. In addition to Monte-Carlo methods, which are based on random sampling, the core of the book covers molecular dynamics simulations in detail and shows how to derive critical physical parameters. It finishes by presenting advanced techniques, and gives invaluable advice on how to set up simulations for a diverse range of applications. -Addresses the current need of students of and researchers in chemistry, biology, and engineering to understand and perform their own molecular simulations -Covers the nitty-gritty ? from Newton's equations and classical mechanics over force-field methods, potential energy surfaces, and probability concepts to statistical and quantum mechanics -Introduces physical, chemical, and mathematical background knowledge in direct relation with simulation practice -Highlights deterministic approaches and random sampling (eg: molecular dynamics versus Monte-Carlo methods) -Contains advanced techniques and practical advice for setting up different simulations to prepare readers entering this exciting field Molecular Simulations: Fundamentals and Practice is an excellent book benefitting chemist, biologists, engineers as well as materials scientists and those involved in biotechnology.

Book Modeling Materials

    Book Details:
  • Author : Ellad B. Tadmor
  • Publisher : Cambridge University Press
  • Release : 2011-11-24
  • ISBN : 1139500651
  • Pages : 789 pages

Download or read book Modeling Materials written by Ellad B. Tadmor and published by Cambridge University Press. This book was released on 2011-11-24 with total page 789 pages. Available in PDF, EPUB and Kindle. Book excerpt: Material properties emerge from phenomena on scales ranging from Angstroms to millimeters, and only a multiscale treatment can provide a complete understanding. Materials researchers must therefore understand fundamental concepts and techniques from different fields, and these are presented in a comprehensive and integrated fashion for the first time in this book. Incorporating continuum mechanics, quantum mechanics, statistical mechanics, atomistic simulations and multiscale techniques, the book explains many of the key theoretical ideas behind multiscale modeling. Classical topics are blended with new techniques to demonstrate the connections between different fields and highlight current research trends. Example applications drawn from modern research on the thermo-mechanical properties of crystalline solids are used as a unifying focus throughout the text. Together with its companion book, Continuum Mechanics and Thermodynamics (Cambridge University Press, 2011), this work presents the complete fundamentals of materials modeling for graduate students and researchers in physics, materials science, chemistry and engineering.

Book Industrial Applications of Molecular Simulations

Download or read book Industrial Applications of Molecular Simulations written by Marc Meunier and published by CRC Press. This book was released on 2016-04-19 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of quantum and molecular simulations has experienced strong growth since the time of the early software packages. A recent study, showed a large increase in the number of people publishing papers based on ab initio methods from about 3,000 in 1991 to roughly 20,000 in 2009, with particularly strong growth in East Asia. Looking to the futu

Book Atomistic Modeling of Materials Failure

Download or read book Atomistic Modeling of Materials Failure written by Markus J. Buehler and published by Springer Science & Business Media. This book was released on 2008-08-07 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an introduction to molecular and atomistic modeling techniques applied to fracture and deformation of solids, focusing on a variety of brittle, ductile, geometrically confined and biological materials. The overview includes computational methods and techniques operating at the atomic scale, and describes how these techniques can be used to model cracks and other deformation mechanisms. The book aims to make new molecular modeling techniques available to a wider community.

Book Molecular Dynamics Simulation

Download or read book Molecular Dynamics Simulation written by J. M. Haile and published by Wiley-Interscience. This book was released on 1997-03-14 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Provides a lot of reading pleasure and many new insights." -Journal of Molecular Structure "This is the most entertaining, stimulating and useful book which can be thoroughly recommended to anyone with an interest in computer simulation." -Contemporary Physics "A very useful introduction . . . more interesting to read than the often dry equation-based texts." -Journal of the American Chemical Society Written especially for the novice, Molecular Dynamics Simulation demonstrates how molecular dynamics simulations work and how to perform them, focusing on how to devise a model for specific molecules and then how to simulate their movements using a computer. This book provides a collection of methods that until now have been scattered through the literature of the last 25 years. It reviews elements of sampling theory and discusses how modern notions of chaos and nonlinear dynamics explain the workings of molecular dynamics. Stresses easy-to-use molecules * Provides sample calculations and figures * Includes four complete FORTRAN codes

Book Modelling and Simulation in the Science of Micro  and Meso Porous Materials

Download or read book Modelling and Simulation in the Science of Micro and Meso Porous Materials written by C.Richard A. Catlow and published by Elsevier. This book was released on 2017-09-20 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modelling and Simulation in the Science of Micro- and Meso-Porous Materials addresses significant developments in the field of micro- and meso-porous science. The book includes sections on Structure Modeling and Prediction, Synthesis, Nucleation and Growth, Sorption and Separation processes, Reactivity and Catalysis, and Fundamental Developments in Methodology to give a complete overview of the techniques currently utilized in this rapidly advancing field. It thoroughly addresses the major challenges in the field of microporous materials, including the crystallization mechanism of porous materials and rational synthesis of porous materials with controllable porous structures and compositions. New applications in emerging areas are also covered, including biomass conversion, C1 chemistry, and CO2 capture. - Authored and edited by experts in the field of micro- and meso-porous materials - Includes introductory material and background both on the science of microporous materials and on the techniques employed in contemporary modeling studies - Rigorous enough for scientists conducting related research, but also accessible to graduate students in chemistry, chemical engineering, and materials science

Book Handbook of Materials Modeling

Download or read book Handbook of Materials Modeling written by Sidney Yip and published by Springer Science & Business Media. This book was released on 2007-11-17 with total page 2903 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.

Book Applied Nanoindentation in Advanced Materials

Download or read book Applied Nanoindentation in Advanced Materials written by Atul Tiwari and published by John Wiley & Sons. This book was released on 2017-10-30 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research in the area of nanoindentation has gained significant momentum in recent years, but there are very few books currently available which can educate researchers on the application aspects of this technique in various areas of materials science. Applied Nanoindentation in Advanced Materials addresses this need and is a comprehensive, self-contained reference covering applied aspects of nanoindentation in advanced materials. With contributions from leading researchers in the field, this book is divided into three parts. Part one covers innovations and analysis, and parts two and three examine the application and evaluation of soft and ceramic-like materials respectively. Key features: A one stop solution for scholars and researchers to learn applied aspects of nanoindentation Contains contributions from leading researchers in the field Includes the analysis of key properties that can be studied using the nanoindentation technique Covers recent innovations Includes worked examples Applied Nanoindentation in Advanced Materials is an ideal reference for researchers and practitioners working in the areas of nanotechnology and nanomechanics, and is also a useful source of information for graduate students in mechanical and materials engineering, and chemistry. This book also contains a wealth of information for scientists and engineers interested in mathematical modelling and simulations related to nanoindentation testing and analysis.