EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Molecular Beam Epitaxy

    Book Details:
  • Author : Mohamed Henini
  • Publisher : Elsevier
  • Release : 2018-06-27
  • ISBN : 0128121378
  • Pages : 790 pages

Download or read book Molecular Beam Epitaxy written by Mohamed Henini and published by Elsevier. This book was released on 2018-06-27 with total page 790 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molecular Beam Epitaxy (MBE): From Research to Mass Production, Second Edition, provides a comprehensive overview of the latest MBE research and applications in epitaxial growth, along with a detailed discussion and 'how to' on processing molecular or atomic beams that occur on the surface of a heated crystalline substrate in a vacuum. The techniques addressed in the book can be deployed wherever precise thin-film devices with enhanced and unique properties for computing, optics or photonics are required. It includes new semiconductor materials, new device structures that are commercially available, and many that are at the advanced research stage. This second edition covers the advances made by MBE, both in research and in the mass production of electronic and optoelectronic devices. Enhancements include new chapters on MBE growth of 2D materials, Si-Ge materials, AIN and GaN materials, and hybrid ferromagnet and semiconductor structures. - Condenses the fundamental science of MBE into a modern reference, speeding up literature review - Discusses new materials, novel applications and new device structures, grounding current commercial applications with modern understanding in industry and research - Includes coverage of MBE as mass production epitaxial technology and how it enhances processing efficiency and throughput for the semiconductor industry and nanostructured semiconductor materials research community

Book Silicon Molecular Beam Epitaxy

Download or read book Silicon Molecular Beam Epitaxy written by E. Kasper and published by CRC Press. This book was released on 2018-05-04 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: This subject is divided into two volumes. Volume I is on homoepitaxy with the necessary systems, techniques, and models for growth and dopant incorporation. Three chapters on homoepitaxy are followed by two chapters describing the different ways in which MBE may be applied to create insulator/Si stackings which may be used for three-dimensional circuits. The two remaining chapters in Volume I are devoted to device applications. The first three chapters of Volume II treat all aspects of heteroepitaxy with the exception of the epitaxial insulator/Si structures already treated in volume I.

Book Silicon Molecular Beam Epitaxy

Download or read book Silicon Molecular Beam Epitaxy written by E. Kasper and published by CRC Press. This book was released on 2018-05-04 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: This subject is divided into two volumes. Volume I is on homoepitaxy with the necessary systems, techniques, and models for growth and dopant incorporation. Three chapters on homoepitaxy are followed by two chapters describing the different ways in which MBE may be applied to create insulator/Si stackings which may be used for three-dimensional circuits. The two remaining chapters in Volume I are devoted to device applications. The first three chapters of Volume II treat all aspects of heteroepitaxy with the exception of the epitaxial insulator/Si structures already treated in volume I.

Book Molecular Beam Epitaxy

    Book Details:
  • Author : Mohamed Henini
  • Publisher : Elsevier
  • Release : 2018-06-26
  • ISBN : 9780128121368
  • Pages : 0 pages

Download or read book Molecular Beam Epitaxy written by Mohamed Henini and published by Elsevier. This book was released on 2018-06-26 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molecular Beam Epitaxy (MBE): From Research to Mass Production, Second Edition, provides a comprehensive overview of the latest MBE research and applications in epitaxial growth, along with a detailed discussion and 'how to' on processing molecular or atomic beams that occur on the surface of a heated crystalline substrate in a vacuum. The techniques addressed in the book can be deployed wherever precise thin-film devices with enhanced and unique properties for computing, optics or photonics are required. It includes new semiconductor materials, new device structures that are commercially available, and many that are at the advanced research stage. This second edition covers the advances made by MBE, both in research and in the mass production of electronic and optoelectronic devices. Enhancements include new chapters on MBE growth of 2D materials, Si-Ge materials, AIN and GaN materials, and hybrid ferromagnet and semiconductor structures.

Book Epitaxial Silicon Technology

Download or read book Epitaxial Silicon Technology written by B Baliga and published by Elsevier. This book was released on 2012-12-02 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: Epitaxial Silicon Technology is a single-volume, in-depth review of all the silicon epitaxial growth techniques. This technology is being extended to the growth of epitaxial layers on insulating substrates by means of a variety of lateral seeding approaches. This book is divided into five chapters, and the opening chapter describes the growth of silicon layers by vapor-phase epitaxy, considering both atmospheric and low-pressure growth. The second chapter discusses molecular-beam epitaxial growth of silicon, providing a unique ability to grow very thin layers with precisely controlled doping characteristics. The third chapter introduces the silicon liquid-phase epitaxy, in which the growth of silicon layers arose from a need to decrease the growth temperature and to suppress autodoping. The fourth chapter addresses the growth of silicon on sapphire for improving the radiation hardness of CMOS integrated circuits. The fifth chapter deals with the advances in the application of silicon epitaxial growth. This chapter also discusses the formation of epitaxial layers of silicon on insulators, such as silicon dioxide, which do not provide a natural single crystal surface for growth. Each chapter begins with a discussion on the fundamental transport mechanisms and the kinetics governing the growth rate, followed by a description of the electrical properties that can be achieved in the layers and the restrictions imposed by the growth technique upon the control over its electrical characteristics. Each chapter concludes with a discussion on the applications of the particular growth technique. This reference material will be useful for process technologists and engineers who may need to apply epitaxial growth for device fabrication.

Book Molecular Beam Epitaxy of III   V Compounds

Download or read book Molecular Beam Epitaxy of III V Compounds written by K. Ploog and published by Springer. This book was released on 1984-03-01 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Epitaxial growth and electronic properties of semiconductor thin films are becoming increasingly important for fundamental and applied research and for device applications. This book contains a comprehensive collection of over 1500 references covering the first 25 years of molecular beam epitaxy of III-V compound semiconductors. Molecular beam epitaxy is a versatile thin­ film growth technique which emerged from the 'Three-temperature method' de­ veloped in the 1950s and from surface kinetic studies performed in the 1960s. III-V semiconductors such as GaAs, AlAs, (Galn)As, InP, etc. , play an important role in the application to optoelectronic and high-speed devices. Over the past three years the technology of molecular beam epitaxy has spread rapidly to most major research and development laboratories through­ out the world, and an increasing number of highly refined III-V semiconduc­ tor structures with exactly tailored electronic properties have been pro­ duced and explored for fundamental studies as well as for device appl ica­ tion. The comprehensive bibliography on this dramatically expanding topic helps chemists, engineers, materials scientists, and physicists working in semiconductor research and development areas to sort out the important lit­ erature of their particular interest. A direct reproduction of the output of a computer printer has been used to enable rapid publication and to keep printing costs low. The work was sponsored by the 'Bundesministerium fUr Forschung und Technologie' of the Federal Republic of Germany. Stuttgart, January 1984 K. Ploog . K. Graf Subject Categories and References Introduction . . . . . . . . . . . . . . . . . . . Year 1977 . . . . . . . . . . . . . . . . . . . . .

Book Selective Area Growth of In plane III V Nanostructures Using Molecular Beam Epitaxy

Download or read book Selective Area Growth of In plane III V Nanostructures Using Molecular Beam Epitaxy written by Maria Fahed and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of nanostructures such as quantum dots and nanowires is a very promising way of integration of III-V semiconductors on silicon, since it allows answering most of the associated material challenges. Together with the continuous trend in device scaling, it should lead to the development of new highly efficient opto- and microelectronic circuits. This appeals for a full mastering of the growth and processing of 3D architectures at the nanometer scale. Consequently, the present work aims at investigating the selective area growth (SAG) of III-V semiconductors by molecular beam epitaxy (MBE) in nanoscale patterns. Homoepitaxial SAG of InAs and InP are first reported in order to show that the growth conditions, the opening width and the stripe directions allow tailoring the nanocrystal shape. We then achieve the SAG of in-plane GaSb nanotemplates on a highly mismatched GaAs (001) substrate at low temperature by atomic hydrogen assisted MBE. We highlight the impact of the nano-stripe orientation as well as the role of the Sb/Ga flux ratio on the strain relaxation of GaSb. Finally, from this study, we demonstrate how these GaSb nanotemplates can be used for subsequent growth of in-plane InAs nanowires.

Book Advances in III V Semiconductor Nanowires and Nanodevices

Download or read book Advances in III V Semiconductor Nanowires and Nanodevices written by Jianye Li and published by Bentham Science Publishers. This book was released on 2011-09-09 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Semiconductor nanowires exhibit novel electronic and optical properties due to their unique one-dimensional structure and quantum confinement effects. In particular, III-V semiconductor nanowires have been of great scientific and technological interest fo"

Book Silicon Molecular Beam Epitaxy

Download or read book Silicon Molecular Beam Epitaxy written by Erich Kasper and published by . This book was released on 1989 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume work covers recent developments in the single crystal growth, by molecular beam epitaxy, of materials compatible with silicon, their physical characterization, and device application. Papers are included on surface physics and related vacuum synthesis techniques such as solid phase epitaxy and ion beam epitaxy. A selection of contents: Volume I. SiGe Superlattices. SiGe strained layer superlattices (G. Abstreiter). Optical properties of strained GeSi superlattices grown on (001)Ge (T.P. Pearsall et al.). Growth and characterization of SiGe atomic layer superlattices (J.-M. Baribeau et al.). Optical properties of perfect and imperfect SiGe superlattices (K.B. Wong et al.). Confined phonons in stained short-period (001) Si/Ge superlattices (W. Bacsa et al.). Calculation of energies and Raman intensities of confined phonons in SiGe strained layer superlattices (J. White et al.). Rippled surface topography observed on silicon molecular beam epitaxial and vapour phase epitaxial layers (A.J. Pidduck et al.). The 698 meV optical band in MBE silicon (N. de Mello et al.). Silicon Growth Doping. Dopant incorporation kinetics and abrupt profiles during silicon molecular beam epitaxy (J.-E. Sundgren et al.). Influence of substrate orientation on surface segregation process in silicon-MBE (K. Nakagawa et al.). Growth and transport properties of SimSb1 (H. Jorke, H. Kibbel). Author Index. Volume. II. In-situ electron microscope studies of lattice mismatch relaxation in GexSi1-x/Si heterostructures (R. Hull et al.). Heterogeneous nucleation sources in molecular beam epitaxy-grown GexSi1-x/Si strained layer superlattices (D.D. Perovic et al.). Silicon Growth. Hydrogen-terminated silicon substrates for low-temperature molecular beam epitaxy (P.J. Grunthaner et al.). Interaction of structure with kinetics in Si(001) homoepitaxy (S. Clarke et al.). Surface step structure of a lens-shaped Si(001) vicinal substrate (K. Sakamoto et al.). Photoluminescence characterization of molecular beam epitaxial silicon (E.C. Lightowlers et al.). Doping. Boron doping using compound source (T. Tatsumi). P-type delta doping in silicon MBE (N.L. Mattey et al.). Modulation-doped superlattices with delta layers in silicon (H.P. Zeindell et al.). Steep doping profiles obtained by low-energy implantation of arsenic in silicon MBE layers (N. Djebbar et al.). Alternative Growth Methods. Limited reaction processing: growth of Si/Si1-xGex for heterojunction bipolar transistor applications (J.L. Hoyt et al.). High gain SiGe heterojunction bipolar transistors grown by rapid thermal chemical vapor deposition (M.L. Green et al.). Epitaxial growth of single-crystalline Si1-xGex on Si(100) by ion beam sputter deposition (F. Meyer et al.). Phosphorus gas doping in gas source silicon-MBE (H. Hirayama, T. Tatsumi). Devices. Narrow band gap base heterojunction bipolar transistors using SiGe alloys (S.S. Iyer et al.). Silicon-based millimeter-wave integrated circuits (J-F. Luy). Performance and processing line integration of a silicon molecular beam epitaxy system (A.A. van Gorkum et al.). Silicides. Reflection high energy electron diffraction study of Cosi2/Si multilayer structures (Q. Ye at al.). Epitaxy of metal silicides (H. von Kanel et al.). Epitaxial growth of ErSi2 on (111)si (D. Loretto et al.). Other Material Systems. Oxygen-doped and nitrogen-doped silicon films prepared by molecular beam epitaxy (M. Tabe et al.). Properties of diamond structure SnGe films grown by molecular beam epitaxy (A. Harwit et al.). Si-MBE: Prospects and Challenges. Prospects and challenges for molecular beam epitaxy in silicon very-large-scale integration (W. Eccleston). Prospects and challenges for SiGe strained-layer epitaxy (T.P. Pearsall). Author Index.

Book III nitride

Download or read book III nitride written by Zhe Chuan Feng and published by Imperial College Press. This book was released on 2006 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: III-Nitride semiconductor materials OCo (Al, In, Ga)N OCo are excellent wide band gap semiconductors very suitable for modern electronic and optoelectronic applications. Remarkable breakthroughs have been achieved recently, and current knowledge and data published have to be modified and upgraded. This book presents the new developments and achievements in the field. Written by renowned experts, the review chapters in this book cover the most important topics and achievements in recent years, discuss progress made by different groups, and suggest future directions. Each chapter also describes the basis of theory or experiment. The III-Nitride-based industry is building up and new economic developments from these materials are promising. It is expected that III-Nitride-based LEDs may replace traditional light bulbs to realize a revolution in lighting. This book is a valuable source of information for engineers, scientists and students working towards such goals. Sample Chapter(s). Chapter 1: Hydride Vapor Phase Epitaxy of Group III Nitride Materials (540 KB). Contents: Hydride Vapor Phase Epitaxy of Group III Nitride Materials (V Dmitriev & A Usikov); Planar MOVPE Technology for Epitaxy of III-Nitride Materials (M Dauelsberg et al.); Close-Coupled Showerhead MOCVD Technology for the Epitaxy of GaN and Related Materials (E J Thrush & A R Boyd); Molecular Beam Epitaxy for III-N Materials (H Tang & J Webb); Growth and Properties of Nonpolar GaN Films and Heterostructures (Y J Sun & O Brandt); Indium-Nitride Growth by High-Pressure CVD: Real-Time and Ex-Situ Characterization (N Dietz); A New Look on InN (L-W Tu et al.); Growth and Optical/Electrical Properties of Al x Ga 1-x N Alloys in the Full Composition Range (F Yun); Optical Investigation of InGaN/GaN Quantum Well Structures Grown by MOCVD (T Wang); Clustering Nanostructures and Optical Characteristics in InGaN/GaN Quantum-Well Structures with Silicon Doping (Y-C Cheng et al.); III-Nitrides Micro- and Nano-Structures (H M Ng & A Chowdhury); New Developments in Dilute Nitride Semiconductor Research (W Shan et al.). Readership: Scientists; material growers and evaluators; device design, processing engineers; postgraduate and graduate students in electrical & electronic engineering and materials engineering.

Book Molecular Beam Epitaxy

    Book Details:
  • Author : Hajime Asahi
  • Publisher : John Wiley & Sons
  • Release : 2019-04-15
  • ISBN : 111935501X
  • Pages : 510 pages

Download or read book Molecular Beam Epitaxy written by Hajime Asahi and published by John Wiley & Sons. This book was released on 2019-04-15 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covers both the fundamentals and the state-of-the-art technology used for MBE Written by expert researchers working on the frontlines of the field, this book covers fundamentals of Molecular Beam Epitaxy (MBE) technology and science, as well as state-of-the-art MBE technology for electronic and optoelectronic device applications. MBE applications to magnetic semiconductor materials are also included for future magnetic and spintronic device applications. Molecular Beam Epitaxy: Materials and Applications for Electronics and Optoelectronics is presented in five parts: Fundamentals of MBE; MBE technology for electronic devices application; MBE for optoelectronic devices; Magnetic semiconductors and spintronics devices; and Challenge of MBE to new materials and new researches. The book offers chapters covering the history of MBE; principles of MBE and fundamental mechanism of MBE growth; migration enhanced epitaxy and its application; quantum dot formation and selective area growth by MBE; MBE of III-nitride semiconductors for electronic devices; MBE for Tunnel-FETs; applications of III-V semiconductor quantum dots in optoelectronic devices; MBE of III-V and III-nitride heterostructures for optoelectronic devices with emission wavelengths from THz to ultraviolet; MBE of III-V semiconductors for mid-infrared photodetectors and solar cells; dilute magnetic semiconductor materials and ferromagnet/semiconductor heterostructures and their application to spintronic devices; applications of bismuth-containing III–V semiconductors in devices; MBE growth and device applications of Ga2O3; Heterovalent semiconductor structures and their device applications; and more. Includes chapters on the fundamentals of MBE Covers new challenging researches in MBE and new technologies Edited by two pioneers in the field of MBE with contributions from well-known MBE authors including three Al Cho MBE Award winners Part of the Materials for Electronic and Optoelectronic Applications series Molecular Beam Epitaxy: Materials and Applications for Electronics and Optoelectronics will appeal to graduate students, researchers in academia and industry, and others interested in the area of epitaxial growth.

Book Molecular Beam Epitaxy Growth and Characterization of ZnO based Layers and Heterostructures

Download or read book Molecular Beam Epitaxy Growth and Characterization of ZnO based Layers and Heterostructures written by Abdelhamid Abdelrehim Mahmoud Elshaer and published by Cuvillier Verlag. This book was released on 2008 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advances in Semiconductor Nanostructures

Download or read book Advances in Semiconductor Nanostructures written by Alexander V. Latyshev and published by Elsevier. This book was released on 2016-11-10 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Semiconductor Nanostructures: Growth, Characterization, Properties and Applications focuses on the physical aspects of semiconductor nanostructures, including growth and processing of semiconductor nanostructures by molecular-beam epitaxy, ion-beam implantation/synthesis, pulsed laser action on all types of III–V, IV, and II–VI semiconductors, nanofabrication by bottom-up and top-down approaches, real-time observations using in situ UHV-REM and high-resolution TEM of atomic structure of quantum well, nanowires, quantum dots, and heterostructures and their electrical, optical, magnetic, and spin phenomena. The very comprehensive nature of the book makes it an indispensable source of information for researchers, scientists, and post-graduate students in the field of semiconductor physics, condensed matter physics, and physics of nanostructures, helping them in their daily research. - Presents a comprehensive reference on the novel physical phenomena and properties of semiconductor nanostructures - Covers recent developments in the field from all over the world - Provides an International approach, as chapters are based on results obtained in collaboration with research groups from Russia, Germany, France, England, Japan, Holland, USA, Belgium, China, Israel, Brazil, and former Soviet Union countries

Book Two dimensional Materials

Download or read book Two dimensional Materials written by Pramoda Kumar Nayak and published by BoD – Books on Demand. This book was released on 2016-08-31 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are only a few discoveries and new technologies in materials science that have the potential to dramatically alter and revolutionize our material world. Discovery of two-dimensional (2D) materials, the thinnest form of materials to ever occur in nature, is one of them. After isolation of graphene from graphite in 2004, a whole other class of atomically thin materials, dominated by surface effects and showing completely unexpected and extraordinary properties, has been created. This book provides a comprehensive view and state-of-the-art knowledge about 2D materials such as graphene, hexagonal boron nitride (h-BN), transition metal dichalcogenides (TMD) and so on. It consists of 11 chapters contributed by a team of experts in this exciting field and provides latest synthesis techniques of 2D materials, characterization and their potential applications in energy conservation, electronics, optoelectronics and biotechnology.