Download or read book Molecular Advances in Wheat and Barley written by Manuel Martinez and published by MDPI. This book was released on 2019-08-20 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Allohexaploid bread wheat and diploid barley are two of the most cultivated crops in the world. This book reports novel research and reviews concerning the use of modern technologies to understand the molecular bases for wheat and barley improvement. The contributions published in this book illustrate research advances in wheat and barley knowledge using modern molecular techniques. These molecular approaches cover genomic, transcriptomic, proteomic, and phenomic levels, together with new tools for gene identification and the development of novel molecular markers. Overall, the contributions for this book lead to a further understanding of regulatory systems in order to improve wheat and barley performance.
Download or read book The Barley Genome written by Nils Stein and published by Springer. This book was released on 2018-08-18 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents an overview of the state-of-the-art in barley genome analysis, covering all aspects of sequencing the genome and translating this important information into new knowledge in basic and applied crop plant biology and new tools for research and crop improvement. Unlimited access to a high-quality reference sequence is removing one of the major constraints in basic and applied research. This book summarizes the advanced knowledge of the composition of the barley genome, its genes and the much larger non-coding part of the genome, and how this information facilitates studying the specific characteristics of barley. One of the oldest domesticated crops, barley is the small grain cereal species that is best adapted to the highest altitudes and latitudes, and it exhibits the greatest tolerance to most abiotic stresses. With comprehensive access to the genome sequence, barley’s importance as a genetic model in comparative studies on crop species like wheat, rye, oats and even rice is likely to increase.
Download or read book Industrial Enzymes written by Julio Polaina and published by Springer Science & Business Media. This book was released on 2007-05-16 with total page 629 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent developments in genetic engineering and protein chemistry are bringing ever more powerful means of analysis to bear on the study of enzyme structure. This volume reviews the most important types of industrial enzymes. In a balanced manner it covers three interrelated aspects of paramount importance for enzyme performance: three-dimensional protein structure, physicochemical and catalytic properties, and the range of both classical and novel applications.
Download or read book Genetics and Genomics of the Triticeae written by Catherine Feuillet and published by Springer Science & Business Media. This book was released on 2009-06-10 with total page 774 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sequencing of the model plant genomes such as those of A. thaliana and rice has revolutionized our understanding of plant biology but it has yet to translate into the improvement of major crop species such as maize, wheat, or barley. Moreover, the comparative genomic studies in cereals that have been performed in the past decade have revealed the limits of conservation between rice and the other cereal genomes. This has necessitated the development of genomic resources and programs for maize, sorghum, wheat, and barley to serve as the foundation for future genome sequencing and the acceleration of genomic based improvement of these critically important crops. Cereals constitute over 50% of total crop production worldwide (http://www.fao.org/) and cereal seeds are one of the most important renewable resources for food, feed, and industrial raw materials. Crop species of the Triticeae tribe that comprise wheat, barley, and rye are essential components of human and domestic animal nutrition. With 17% of all crop area, wheat is the staple food for 40% of the world’s population, while barley ranks fifth in the world production. Their domestication in the Fertile Crescent 10,000 years ago ushered in the beginning of agriculture and signified an important breakthrough in the advancement of civilization. Rye is second after wheat among grains most commonly used in the production of bread and is also very important for mixed animal feeds. It can be cultivated in poor soils and climates that are generally not suitable for other cereals. Extensive genetics and cytogenetics studies performed in the Triticeae species over the last 50 years have led to the characterization of their chromosomal composition and origins and have supported intensive work to create new genetic resources. Cytogenetic studies in wheat have allowed the identification and characterization of the different homoeologous genomes and have demonstrated the utility of studying wheat genome evolution as a model for the analysis of polyploidization, a major force in the evolution of the eukaryotic genomes. Barley with its diploid genome shows high collinearity with the other Triticeae genomes and therefore serves as a good template for supporting genomic analyses in the wheat and rye genomes. The knowledge gained from genetic studies in the Triticeae has also been used to produce Triticale, the first human made hybrid crop that results from a cross between wheat and rye and combines the nutrition quality and productivity of wheat with the ruggedness of rye. Despite the economic importance of the Triticeae species and the need for accelerated crop improvement based on genomics studies, the size (1.7 Gb for the bread wheat genome, i.e., 5x the human genome and 40 times the rice genome), high repeat content (>80%), and complexity (polyploidy in wheat) of their genomes often have been considered too challenging for efficient molecular analysis and genetic improvement in these species. Consequently, Triticeae genomics has lagged behind the genomic advances of other cereal crops for many years. Recently, however, the situation has changed dramatically and robust genomic programs can be established in the Triticeae as a result of the convergence of several technology developments that have led to new, more efficient scientific capabilities and resources such as whole-genome and chromosome-specific BAC libraries, extensive EST collections, transformation systems, wild germplasm and mutant collections, as well as DNA chips. Currently, the Triticeae genomics "toolbox" is comprised of: - 9 publicly available BAC libraries from diploid (5), tetraploid (1) and hexaploid (3) wheat; 3 publicly available BAC libraries from barley and one BAC library from rye; - 3 wheat chromosome specific BAC libraries; - DNA chips including commercially available first generation chips from AFFYMETRIX containing 55’000 wheat and 22,000 barley genes; - A large number of wheat and barley genetic maps that are saturated by a significant number of markers; - The largest plant EST collection with 870’000 wheat ESTs, 440’000 barley ESTs and about 10’000 rye ESTs; - Established protocols for stable transformation by biolistic and agrobacterium as well as a transient expression system using VIGS in wheat and barley; and - Large collections of well characterized cultivated and wild genetic resources. International consortia, such as the International Triticeae Mapping Initiative (ITMI), have advanced synergies in the Triticeae genetics community in the development of additional mapping populations and markers that have led to a dramatic improvement in the resolution of the genetic maps and the amount of molecular markers in the three species resulting in the accelerated utilization of molecular markers in selection programs. Together, with the development of the genomic resources, the isolation of the first genes of agronomic interest by map-based cloning has been enabled and has proven the feasibility of forging the link between genotype and phenotype in the Triticeae species. Moreover, the first analyses of BAC sequences from wheat and barley have allowed preliminary characterizations of their genome organization and composition as well as the first inter- and intra-specific comparative genomic studies. These later have revealed important evolutionary mechanisms (e.g. unequal crossing over, illegitimate recombination) that have shaped the wheat and barley genomes during their evolution. These breakthroughs have demonstrated the feasibility of developing efficient genomic studies in the Triticeae and have led to the recent establishment of the International Wheat Genome Sequencing Consortium (IWGSC) (http//:www.wheatgenome.org) and the International Barley Sequencing Consortium (www.isbc.org) that aim to sequence, respectively, the hexaploid wheat and barley genomes to accelerate gene discovery and crop improvement in the next decade. Large projects aiming at the establishment of the physical maps as well as a better characterization of their composition and organization through large scale random sequencing projects have been initiated already. Concurrently, a number of projects have been launched to develop high throughput functional genomics in wheat and barley. Transcriptomics, proteomics, and metabolomics analyses of traits of agronomic importance, such as quality, disease resistance, drought, and salt tolerance, are underway in both species. Combined with the development of physical maps, efficient gene isolation will be enabled and improved sequencing technologies and reduced sequencing costs will permit ultimately genome sequencing and access to the entire wheat and barley gene regulatory elements repertoire. Because rye is closely related to wheat and barley in Triticeae evolution, the latest developments in wheat and barley genomics will be of great use for developing rye genomics and for providing tools for rye improvement. Finally, a new model for temperate grasses has emerged in the past year with the development of the genetics and genomics (including a 8x whole genome shotgun sequencing project) of Brachypodium, a member of the Poeae family that is more closely related to the Triticeae than rice and can provide valuable information for supporting Triticeae genomics in the near future. These recent breakthroughs have yet to be reviewed in a single source of literature and current handbooks on wheat, barley, or rye are dedicated mainly to progress in genetics. In "Genetics and Genomics of the Triticeae", we will aim to comprehensively review the recent progress in the development of structural and functional genomics tools in the Triticeae species and review the understanding of wheat, barley, and rye biology that has resulted from these new resources as well as to illuminate how this new found knowledge can be applied for the improvement of these essential species. The book will be the seventh volume in the ambitious series of books, Plant Genetics and Genomics (Richard A. Jorgensen, series editor) that will attempt to bring the field up-to-date on the genetics and genomics of important crop plants and genetic models. It is our hope that the publication will be a useful and timely tool for researchers and students alike working with the Triticeae.
Download or read book DNA Based Markers in Plants written by R.L. Phillips and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the new techniques described in this volume, a new gene can be placed on the linkage map within only a few days. Leading researchers have updated the earlier edition to include the latest versions of DNA-based marker maps for a variety of important crops.
Download or read book Advances in Wheat Genetics From Genome to Field written by Yasunari Ogihara and published by Springer. This book was released on 2015-09-15 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: This proceedings is a collection of 46 selected papers that were presented at the 12th International Wheat Genetics Symposium (IWGS). Since the launch of the wheat genome sequencing project in 2005, the arrival of draft genome sequences has marked a new era in wheat genetics and genomics, catalyzing rapid advancement in the field. This book provides a comprehensive review of the forefront of wheat research, across various important topics such as germplasm and genetic diversity, cytogenetics and allopolyploid evolution, genome sequencing, structural and functional genomics, gene function and molecular biology, biotic stress, abiotic stress, grain quality, and classical and molecular breeding. Following an introduction, 9 parts of the book are dedicated to each of these topics. A final, 11th part entitled “Toward Sustainable Wheat Production” contains 7 excellent papers that were presented in the 12th IWGS Special Session supported by the OECD. With rapid population growth and radical climate changes, the world faces a global food crisis and is in need of another Green Revolution to boost yields of wheat and other widely grown staple crops. Although this book focuses on wheat, many of the newly developed techniques and results presented here can be applied to other plant species with large and complex genomes. As such, this volume is highly recommended for all students and researchers in wheat sciences and related plant sciences and for those who are interested in stable food production and food security.
Download or read book Genetic and Genomic Resources for Grain Cereals Improvement written by Mohar Singh and published by Academic Press. This book was released on 2015-11-10 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: Genetic and Genomic Resources For Cereals Improvement is the first book to bring together the latest available genetic resources and genomics to facilitate the identification of specific germplasm, trait mapping, and allele mining that are needed to more effectively develop biotic and abiotic-stress-resistant grains. As grain cereals, including rice, wheat, maize, barley, sorghum, and millets constitute the bulk of global diets, both of vegetarian and non-vegetarian, there is a greater need for further genetic improvement, breeding, and plant genetic resources to secure the future food supply. This book is an invaluable resource for researchers, crop biologists, and students working with crop development and the changes in environmental climate that have had significant impact on crop production. It includes the latest information on tactics that ensure that environmentally robust genes and crops resilient to climate change are identified and preserved. - Provides a single-volume resource on the global research work on grain cereals genetics and genomics - Presents information for effectively managing and utilizing the genetic resources of this core food supply source - Includes coverage of rice, wheat, maize, barley, sorghum, and pearl, finger and foxtail millets
Download or read book Advances in Breeding Techniques for Cereal Crops written by Frank Ordon and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Alien Introgression in Wheat written by Márta Molnár-Láng and published by Springer. This book was released on 2015-11-20 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of the latest advancements in the field of alien introgression in wheat. The discovery and wide application of molecular genetic techniques including molecular markers, in situ hybridization, and genomics has led to a surge in interspecific and intergeneric hybridization in recent decades. The work begins with the taxonomy of cereals, especially of those species which are potential gene sources for wheat improvement. The text then goes on to cover the origin of wheat, breeding in connection with alien introgressions, and the problems of producing intergeneric hybrids and backcross derivatives. These problems can include crossability, sterility, and unequal chromosome transmission. The work then covers alien introgressions according to the related species used, as well as new results in the field of genomics of wild wheat relatives and introgressions.
Download or read book Alaska and Stoner Or miracle Wheats written by Carleton Roy Ball and published by . This book was released on 1916 with total page 30 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Sprouted Grains written by Hao Feng and published by Elsevier. This book was released on 2018-10-11 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sprouted Grains: Nutritional Value, Production and Applications is a complete and comprehensive overview of sprouted grains, with coverage from grain to product. Sections includes discussions on the process of grain germination from both a genetic and physiological perspective, the nutrients and bioactive compounds present in spouted grains, and the equipment and technical innovation of use to manufacturers of sprouted grains and sprouted grain products. This book is essential reading for cereal science academics and postgraduate students interested in the subject of cereal processing, but is also ideal for industrial product developers in cereal companies. This edited volume brings together the world's leading researchers on sprouted grains. - Presents the nutrient and bioactive components of these healthy grains - Provides extensive coverage of products developed from sprouted grains - Includes contributions from an International team of both academic and industrial authors - Covers the equipment and technology used in grain processing
Download or read book Advances in Plant Breeding Strategies Cereals written by Jameel M. Al-Khayri and published by Springer Nature. This book was released on 2019-10-11 with total page 606 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines the development of innovative modern methodologies towards augmenting conventional plant breeding, in individual crops, for the production of new crop varieties under the increasingly limiting environmental and cultivation factors to achieve sustainable agricultural production, enhanced food security, in addition to providing raw materials for innovative industrial products and pharmaceuticals. This Volume 5, subtitled Cereals, focuses on advances in breeding strategies using both traditional and modern approaches for the improvement of individual crops. It addresses important staple food crops including barley, fonio, finger millet, foxtail millet, pearl millet, proso millet, quinoa, rice, rye, tef, triticale and spelt wheat. The volume is contributed by 53 internationally reputable scientists from 14 countries. Each chapter comprehensively reviews the modern literature on the subject and reflects the authors own experience.
Download or read book Transgenic Wheat Barley and Oats written by Huw D. Jones and published by Humana Press. This book was released on 2008-11-11 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding the physical and genetic structure of cereal genomes and how defined coding and non-coding regions interact with the environment to determine a phenotype are key to the future of plant breeding and agriculture. The production and characteri- tion of transgenic plants is a powerful reverse genetic strategy increasingly used in cereals research to ascribe function to defined DNA sequences. However, the techniques and resources required to conduct these investigations have, until recently, been difficult to achieve or totally lacking in wheat, barley and oat. This book brings together the l- est protocols for the transformation, regeneration and selection using both biolistic and Agrobacterium tumefaciens appropriate for these three species. It includes two chapters describing in vitro Agrobacterium co-cultivation, one leading to germ line transformation with no need for tissue culture-based regeneration. In addition, it has several chapters dedicated to the manipulation of gene expression and characterisation of the recombinant locus and transgenic plants. Finally, it tackles the issues of GM risk assessment, field trials and substantial equivalence in terms of transcriptomics, proteomics and metabolomics. Although this book is dedicated to the temperate small grain cereals wheat, barley and oats, many of the techniques described could be readily adapted for other cereals or plants generally. We thank all the contributing authors for their timely and informative chapters, the staff of Humana Press, especially John Walker for their guidance, and Helen Jenkins for her proof-reading, word processing and administrative support. v Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Contributors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix PART I.
Download or read book Barley written by Steven E. Ullrich and published by John Wiley & Sons. This book was released on 2010-12-30 with total page 672 pages. Available in PDF, EPUB and Kindle. Book excerpt: Barley is one of the world's most important crops with uses ranging from food and feed production, malting and brewing to its use as a model organism in molecular research. The demand and uses of barley continue to grow and there is a need for an up-to-date comprehensive reference that looks at all aspects of the barley crop from taxonomy and morphology through to end use. Barley will fill this increasing void. Barley will stand as a must have reference for anyone researching, growing, or utilizing this important crop.
Download or read book Diversity in Barley Hordeum vulgare written by R. von Bothmer and published by Elsevier. This book was released on 2003-07-03 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: Genetic diversity is one of the main resources sustaining human life. Food security largely depends on the availability and utilization of this diversity, which is of strategic importance for countries and companies. Conservation and utilization of biodiversity is thus currently an urgent area of global debate and concern. Barley is a major crop in the world used for food, feed and malt, and with a wide religious and ethnic importance. The crop was domesticated in Neolithic time in SW Asia and spread rapidly under cultivation to new areas. Nowadays it is one of the most widespread and widely adapted crops grown under contrasting edaphic conditions. Adaptations to new environments, different agricultural practices and selection for different uses have further added to the complex diversity pattern. Is it at all possible to give a complete picture of the diversity in a crop or wild species? Are we, by adding new technologies, only revealing parts of the diversity? Do different sets of data show similar or conflicting pictures of genetic diversity? Will the large genome size reduce the role of barley as a model organism in these current sequencing days? Or, are there still major reasons to continue to work with this beautiful crop? The aim of this book is to cover the complex issue of diversification in time and space in a single crop: barley. Leading scientists from various fields describe the entire variation pattern in different sets of characters and an attempt is made for a synthesis to a holistic picture. The book proposes ways to use the achievements of diversity studies in future research and breeding programmes.
Download or read book Genetically Engineered Crops written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2017-01-28 with total page 607 pages. Available in PDF, EPUB and Kindle. Book excerpt: Genetically engineered (GE) crops were first introduced commercially in the 1990s. After two decades of production, some groups and individuals remain critical of the technology based on their concerns about possible adverse effects on human health, the environment, and ethical considerations. At the same time, others are concerned that the technology is not reaching its potential to improve human health and the environment because of stringent regulations and reduced public funding to develop products offering more benefits to society. While the debate about these and other questions related to the genetic engineering techniques of the first 20 years goes on, emerging genetic-engineering technologies are adding new complexities to the conversation. Genetically Engineered Crops builds on previous related Academies reports published between 1987 and 2010 by undertaking a retrospective examination of the purported positive and adverse effects of GE crops and to anticipate what emerging genetic-engineering technologies hold for the future. This report indicates where there are uncertainties about the economic, agronomic, health, safety, or other impacts of GE crops and food, and makes recommendations to fill gaps in safety assessments, increase regulatory clarity, and improve innovations in and access to GE technology.
Download or read book Recent Advances in Grain Crops Research written by Farooq Shah and published by BoD – Books on Demand. This book was released on 2020-02-26 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cultivation of grain crops has been rightly recognized as one of the main drivers in shaping human civilizations. Considering their key role in fulfilling a major portion of the global food needs, grain crops are the most widely grown crops around the world. Unfortunately, like many other agronomic crops, grain crops are quite vulnerable to climate change and this has posed multifaceted threats to agricultural sustainability. To add to the menace, the deteriorating quantity and quality of both land and water as primary factors of production are further aggravating the scenario. Confronting such challenges demands innovative adaptation strategies through intensification of grain crop production that can ensure grain self-sufficiency worldwide.