EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Modern Mathematics And Applications In Computer Graphics And Vision

Download or read book Modern Mathematics And Applications In Computer Graphics And Vision written by Hongyu Guo and published by World Scientific Publishing Company. This book was released on 2014-04-01 with total page 523 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a concise exposition of modern mathematical concepts, models and methods with applications in computer graphics, vision and machine learning. The compendium is organized in four parts — Algebra, Geometry, Topology, and Applications. One of the features is a unique treatment of tensor and manifold topics to make them easier for the students. All proofs are omitted to give an emphasis on the exposition of the concepts. Effort is made to help students to build intuition and avoid parrot-like learning.There is minimal inter-chapter dependency. Each chapter can be used as an independent crash course and the reader can start reading from any chapter — almost. This book is intended for upper level undergraduate students, graduate students and researchers in computer graphics, geometric modeling, computer vision, pattern recognition and machine learning. It can be used as a reference book, or a textbook for a selected topics course with the instructor's choice of any of the topics.

Book Modern Mathematics and Applications in Computer Graphics and Vision

Download or read book Modern Mathematics and Applications in Computer Graphics and Vision written by Hongyu Guo and published by World Scientific Publishing Company. This book was released on 2014 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Structures; Algebra: Linear Algebra; Tensor Algebra; Exterior Algebra; Geometric Algebra; Geometry: Projective Geometry; Differential Geometry; Non-Euclidean Geometry; Topology and More: General Topology; Manifolds; Hilbert Spaces; Measure Spaces and Probability Spaces; Applications: Color Spaces; Perspective Analysis of Images; Quaternions and 3-D Rotations; Support Vector Machines and Reproducing Kernel Hilbert Spaces; Manifold Learning in Machine Learning;

Book Image Processing for Computer Graphics and Vision

Download or read book Image Processing for Computer Graphics and Vision written by Luiz Velho and published by Springer Science & Business Media. This book was released on 2009-04-29 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: Image processing is concerned with the analysis and manipulation of images by computer. Providing a thorough treatment of image processing with an emphasis on those aspects most used in computer graphics, the authors concentrate on describing and analyzing the underlying concepts rather than on presenting algorithms or pseudocode. As befits a modern introduction to this topic, a good balance is struck between discussing the underlying mathematics and the main topics: signal processing, data discretization, the theory of colour and different colour systems, operations in images, dithering and half-toning, warping and morphing and image processing. This second edition reflects recent trends in science andtechnology that exploit image processing in computer graphics and vision applications. Stochastic image models and statistical methods for image processing are covered as are: A modern approach and new developments in the area, Probability theory for image processing, Applications in image analysis and computer vision.

Book Mathematical Optimization in Computer Graphics and Vision

Download or read book Mathematical Optimization in Computer Graphics and Vision written by Luiz Velho and published by Morgan Kaufmann. This book was released on 2011-08-09 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical optimization is used in nearly all computer graphics applications, from computer vision to animation. This book teaches readers the core set of techniques that every computer graphics professional should understand in order to envision and expand the boundaries of what is possible in their work. Study of this authoritative reference will help readers develop a very powerful tool- the ability to create and decipher mathematical models that can better realize solutions to even the toughest problems confronting computer graphics community today. - Distills down a vast and complex world of information on optimization into one short, self-contained volume especially for computer graphics - Helps CG professionals identify the best technique for solving particular problems quickly, by categorizing the most effective algorithms by application - Keeps readers current by supplementing the focus on key, classic methods with special end-of-chapter sections on cutting-edge developments

Book Mathematics for Computer Graphics Applications

Download or read book Mathematics for Computer Graphics Applications written by Michael E. Mortenson and published by Industrial Press Inc.. This book was released on 1999 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Mathematics for Computer Graphics Applications is written for several audiences: for college students majoring in computer science, engineering, or applied mathematics and science, whose special interests are in computer graphics, CAD/CAM, geometric modeling, visualization, or related subjects; for industry and government on-the-job training of employees whose skills can be profitably expanded into these areas; and for the professional working in these fields in need of a comprehensive reference and skills refresher."--BOOK JACKET.

Book Vision Geometry

    Book Details:
  • Author : Robert A. Melter
  • Publisher : American Mathematical Soc.
  • Release : 1991
  • ISBN : 082185125X
  • Pages : 254 pages

Download or read book Vision Geometry written by Robert A. Melter and published by American Mathematical Soc.. This book was released on 1991 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since its genesis more than thirty-five years ago, the field of computer vision has been known by various names, including pattern recognitions, image analysis, and image understanding. The central problem of computer vision is obtaining descriptive information by computer analysis of images of a scene. Together with the related fields of image processing and computer graphics, it has become an established discipline at the interface between computer science and electrical engineering. This volume contains fourteen papers presented at the AMS Special Session on Geometry Related to Computer Vision, held in Hoboken, New Jersey in Ooctober 1989. This book makes the results presented at the Special Session, which previously had been available only in the computer science literature, more widely available within the mathematical sciences community. Geometry plays a major role in computer vision since scene descriptions always involve geometrical properties of, and relations among, the objects of surfaces in the scene. The papers in this book provide a good sampling of geometric problems connected with computer vision. They deal with digital lines and curves, polygons, shape decompositions, digital connectedness and surfaces, digital metrics, and generalizations to higher-dimensional and graph-structured "spaces". Aimed at computer scientists specializing in image processing, computer vision, and pattern recognition - as well as mathematicians interested in applications to computer science - this book will provide readers with a view of how geometry is currently being applied to problems in computer vision.

Book Handbook of Geometric Computing

Download or read book Handbook of Geometric Computing written by Eduardo Bayro Corrochano and published by Springer Science & Business Media. This book was released on 2005-12-06 with total page 773 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many computer scientists, engineers, applied mathematicians, and physicists use geometry theory and geometric computing methods in the design of perception-action systems, intelligent autonomous systems, and man-machine interfaces. This handbook brings together the most recent advances in the application of geometric computing for building such systems, with contributions from leading experts in the important fields of neuroscience, neural networks, image processing, pattern recognition, computer vision, uncertainty in geometric computations, conformal computational geometry, computer graphics and visualization, medical imagery, geometry and robotics, and reaching and motion planning. For the first time, the various methods are presented in a comprehensive, unified manner. This handbook is highly recommended for postgraduate students and researchers working on applications such as automated learning; geometric and fuzzy reasoning; human-like artificial vision; tele-operation; space maneuvering; haptics; rescue robots; man-machine interfaces; tele-immersion; computer- and robotics-aided neurosurgery or orthopedics; the assembly and design of humanoids; and systems for metalevel reasoning.

Book Digital and Discrete Geometry

Download or read book Digital and Discrete Geometry written by Li M. Chen and published by Springer. This book was released on 2014-12-12 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides comprehensive coverage of the modern methods for geometric problems in the computing sciences. It also covers concurrent topics in data sciences including geometric processing, manifold learning, Google search, cloud data, and R-tree for wireless networks and BigData. The author investigates digital geometry and its related constructive methods in discrete geometry, offering detailed methods and algorithms. The book is divided into five sections: basic geometry; digital curves, surfaces and manifolds; discretely represented objects; geometric computation and processing; and advanced topics. Chapters especially focus on the applications of these methods to other types of geometry, algebraic topology, image processing, computer vision and computer graphics. Digital and Discrete Geometry: Theory and Algorithms targets researchers and professionals working in digital image processing analysis, medical imaging (such as CT and MRI) and informatics, computer graphics, computer vision, biometrics, and information theory. Advanced-level students in electrical engineering, mathematics, and computer science will also find this book useful as a secondary text book or reference. Praise for this book: This book does present a large collection of important concepts, of mathematical, geometrical, or algorithmical nature, that are frequently used in computer graphics and image processing. These concepts range from graphs through manifolds to homology. Of particular value are the sections dealing with discrete versions of classic continuous notions. The reader finds compact definitions and concise explanations that often appeal to intuition, avoiding finer, but then necessarily more complicated, arguments... As a first introduction, or as a reference for professionals working in computer graphics or image processing, this book should be of considerable value." - Prof. Dr. Rolf Klein, University of Bonn.

Book Mathematical Methods in Computer Vision

Download or read book Mathematical Methods in Computer Vision written by Peter J. Olver and published by Springer Science & Business Media. This book was released on 2003-10 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Comprises some of the key work presented at two IMA Wokshops on Computer Vision during fall of 2000."--Pref.

Book An Invitation to 3 D Vision

Download or read book An Invitation to 3 D Vision written by Yi Ma and published by Springer Science & Business Media. This book was released on 2012-11-06 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the geometry of 3-D vision, that is, the reconstruction of 3-D models of objects from a collection of 2-D images. It details the classic theory of two view geometry and shows that a more proper tool for studying the geometry of multiple views is the so-called rank consideration of the multiple view matrix. It also develops practical reconstruction algorithms and discusses possible extensions of the theory.

Book Algorithms for Image Processing and Computer Vision

Download or read book Algorithms for Image Processing and Computer Vision written by J. R. Parker and published by John Wiley & Sons. This book was released on 2010-11-29 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: A cookbook of algorithms for common image processing applications Thanks to advances in computer hardware and software, algorithms have been developed that support sophisticated image processing without requiring an extensive background in mathematics. This bestselling book has been fully updated with the newest of these, including 2D vision methods in content-based searches and the use of graphics cards as image processing computational aids. It’s an ideal reference for software engineers and developers, advanced programmers, graphics programmers, scientists, and other specialists who require highly specialized image processing. Algorithms now exist for a wide variety of sophisticated image processing applications required by software engineers and developers, advanced programmers, graphics programmers, scientists, and related specialists This bestselling book has been completely updated to include the latest algorithms, including 2D vision methods in content-based searches, details on modern classifier methods, and graphics cards used as image processing computational aids Saves hours of mathematical calculating by using distributed processing and GPU programming, and gives non-mathematicians the shortcuts needed to program relatively sophisticated applications. Algorithms for Image Processing and Computer Vision, 2nd Edition provides the tools to speed development of image processing applications.

Book Covariances in Computer Vision and Machine Learning

Download or read book Covariances in Computer Vision and Machine Learning written by Hà Quang Minh and published by Morgan & Claypool Publishers. This book was released on 2017-11-07 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covariance matrices play important roles in many areas of mathematics, statistics, and machine learning, as well as their applications. In computer vision and image processing, they give rise to a powerful data representation, namely the covariance descriptor, with numerous practical applications. In this book, we begin by presenting an overview of the {\it finite-dimensional covariance matrix} representation approach of images, along with its statistical interpretation. In particular, we discuss the various distances and divergences that arise from the intrinsic geometrical structures of the set of Symmetric Positive Definite (SPD) matrices, namely Riemannian manifold and convex cone structures. Computationally, we focus on kernel methods on covariance matrices, especially using the Log-Euclidean distance. We then show some of the latest developments in the generalization of the finite-dimensional covariance matrix representation to the {\it infinite-dimensional covariance operator} representation via positive definite kernels. We present the generalization of the affine-invariant Riemannian metric and the Log-Hilbert-Schmidt metric, which generalizes the Log Euclidean distance. Computationally, we focus on kernel methods on covariance operators, especially using the Log-Hilbert-Schmidt distance. Specifically, we present a two-layer kernel machine, using the Log-Hilbert-Schmidt distance and its finite-dimensional approximation, which reduces the computational complexity of the exact formulation while largely preserving its capability. Theoretical analysis shows that, mathematically, the approximate Log-Hilbert-Schmidt distance should be preferred over the approximate Log-Hilbert-Schmidt inner product and, computationally, it should be preferred over the approximate affine-invariant Riemannian distance. Numerical experiments on image classification demonstrate significant improvements of the infinite-dimensional formulation over the finite-dimensional counterpart. Given the numerous applications of covariance matrices in many areas of mathematics, statistics, and machine learning, just to name a few, we expect that the infinite-dimensional covariance operator formulation presented here will have many more applications beyond those in computer vision.

Book Numerical Geometry of Images

Download or read book Numerical Geometry of Images written by Ron Kimmel and published by Springer Science & Business Media. This book was released on 2012-09-07 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Geometry of Images examines computational methods and algorithms in image processing. It explores applications like shape from shading, color-image enhancement and segmentation, edge integration, offset curve computation, symmetry axis computation, path planning, minimal geodesic computation, and invariant signature calculation. In addition, it describes and utilizes tools from mathematical morphology, differential geometry, numerical analysis, and calculus of variations. Graduate students, professionals, and researchers with interests in computational geometry, image processing, computer graphics, and algorithms will find this new text / reference an indispensable source of insight of instruction.

Book An Invitation to 3 D Vision

Download or read book An Invitation to 3 D Vision written by Yi Ma and published by Springer. This book was released on 2012-11-05 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the geometry of 3-D vision, that is, the reconstruction of 3-D models of objects from a collection of 2-D images. It details the classic theory of two view geometry and shows that a more proper tool for studying the geometry of multiple views is the so-called rank consideration of the multiple view matrix. It also develops practical reconstruction algorithms and discusses possible extensions of the theory.

Book Geometric Methods and Applications

Download or read book Geometric Methods and Applications written by Jean Gallier and published by Springer Science & Business Media. This book was released on 2011-06-04 with total page 696 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to the fundamental concepts and tools needed for solving problems of a geometric nature using a computer. It attempts to fill the gap between standard geometry books, which are primarily theoretical, and applied books on computer graphics, computer vision, robotics, or machine learning. This book covers the following topics: affine geometry, projective geometry, Euclidean geometry, convex sets, SVD and principal component analysis, manifolds and Lie groups, quadratic optimization, basics of differential geometry, and a glimpse of computational geometry (Voronoi diagrams and Delaunay triangulations). Some practical applications of the concepts presented in this book include computer vision, more specifically contour grouping, motion interpolation, and robot kinematics. In this extensively updated second edition, more material on convex sets, Farkas’s lemma, quadratic optimization and the Schur complement have been added. The chapter on SVD has been greatly expanded and now includes a presentation of PCA. The book is well illustrated and has chapter summaries and a large number of exercises throughout. It will be of interest to a wide audience including computer scientists, mathematicians, and engineers. Reviews of first edition: "Gallier's book will be a useful source for anyone interested in applications of geometrical methods to solve problems that arise in various branches of engineering. It may help to develop the sophisticated concepts from the more advanced parts of geometry into useful tools for applications." (Mathematical Reviews, 2001) "...it will be useful as a reference book for postgraduates wishing to find the connection between their current problem and the underlying geometry." (The Australian Mathematical Society, 2001)

Book 3D Computer Graphics

    Book Details:
  • Author : Samuel R. Buss
  • Publisher : Cambridge University Press
  • Release : 2003-05-19
  • ISBN : 1139440381
  • Pages : 397 pages

Download or read book 3D Computer Graphics written by Samuel R. Buss and published by Cambridge University Press. This book was released on 2003-05-19 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook, first published in 2003, emphasises the fundamentals and the mathematics underlying computer graphics. The minimal prerequisites, a basic knowledge of calculus and vectors plus some programming experience in C or C++, make the book suitable for self study or for use as an advanced undergraduate or introductory graduate text. The author gives a thorough treatment of transformations and viewing, lighting and shading models, interpolation and averaging, Bézier curves and B-splines, ray tracing and radiosity, and intersection testing with rays. Additional topics, covered in less depth, include texture mapping and colour theory. The book covers some aspects of animation, including quaternions, orientation, and inverse kinematics, and includes source code for a Ray Tracing software package. The book is intended for use along with any OpenGL programming book, but the crucial features of OpenGL are briefly covered to help readers get up to speed. Accompanying software is available freely from the book's web site.

Book Geometric Level Set Methods in Imaging  Vision  and Graphics

Download or read book Geometric Level Set Methods in Imaging Vision and Graphics written by Stanley Osher and published by Springer Science & Business Media. This book was released on 2007-05-08 with total page 523 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here is, for the first time, a book that clearly explains and applies new level set methods to problems and applications in computer vision, graphics, and imaging. It is an essential compilation of survey chapters from the leading researchers in the field. The applications of the methods are emphasized.