Download or read book Modern Compressible Flow written by John David Anderson and published by . This book was released on 2004 with total page 760 pages. Available in PDF, EPUB and Kindle. Book excerpt: Anderson's book provides the most accessible approach to compressible flow for Mechanical and Aerospace Engineering students and professionals. In keeping with previous versions, the 3rd edition uses numerous historical vignettes that show the evolution of the field.New pedagogical features--"Roadmaps" showing the development of a given topic, and "Design Boxes" giving examples of design decisions--will make the 3rd edition even more practical and user-friendly than before.The 3rd edition strikes a careful balance between classical methods of determining compressible flow, and modern numerical and computer techniques (such as CFD) now used widely in industry & research.A new Book Website will contain all problem solutions for instructors.
Download or read book Modern Compressible Flow written by John David Anderson and published by McGraw-Hill Science, Engineering & Mathematics. This book was released on 1990 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern Compressible Flow, Second Edition, presents the fundamentals of classical compressible flow along with the latest coverage of modern compressible flow dynamics and high-temperature flows. The second edition maintains an engaging writing style and offers philosophical and historical perspectives on the topic. It also continues to offer a variety of problems-providing readers with a practical understanding. The second edition includes the latest developments in the field of modern compressible flow.
Download or read book Modern Compressible Flow with Historical Perspective written by John David Anderson and published by McGraw-Hill Science, Engineering & Mathematics. This book was released on 1982 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: Anderson's book provides the most accessible approach to compressible flow for Mechanical and Aerospace Engineering students and professionals. In keeping with previous versions, the 3rd edition uses numerous historical vignettes that show the evolution of the field. New pedagogical features--"Roadmaps" showing the development of a given topic, and "Design Boxes" giving examples of design decisions--will make the 3rd edition even more practical and user-friendly than before. The 3rd edition strikes a careful balance between classical methods of determining compressible flow, and modern numerical and computer techniques (such as CFD) now used widely in industry & research. A new Book Website will contain all problem solutions for instructors.
Download or read book Hypersonic and High Temperature Gas Dynamics written by John David Anderson and published by AIAA. This book was released on 1989 with total page 710 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a self-contained text for those students and readers interested in learning hypersonic flow and high-temperature gas dynamics. It assumes no prior familiarity with either subject on the part of the reader. If you have never studied hypersonic and/or high-temperature gas dynamics before, and if you have never worked extensively in the area, then this book is for you. On the other hand, if you have worked and/or are working in these areas, and you want a cohesive presentation of the fundamentals, a development of important theory and techniques, a discussion of the salient results with emphasis on the physical aspects, and a presentation of modern thinking in these areas, then this book is also for you. In other words, this book is designed for two roles: 1) as an effective classroom text that can be used with ease by the instructor, and understood with ease by the student; and 2) as a viable, professional working tool for engineers, scientists, and managers who have any contact in their jobs with hypersonic and/or high-temperature flow.
Download or read book Modern Compressible Flow written by John David Anderson (Jr.) and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: "This is a book on modern compressible flows. In essence, this book presents the fundamentals of classical compressible flow as they have evolved over the past two centuries, but with added emphasis on two new dimensions that have become so important over the past two decades, namely: Modern computational fluid dynamics and High-temperature flows. In short, the modern compressible flow of today is a mutually supportive mixture of classical analysis along with computational techniques, with the treatment of high temperature effects being almost routine"--
Download or read book Waves and Compressible Flow written by Hilary Ockendon and published by Springer Science & Business Media. This book was released on 2006-05-17 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers compressible flow however the authors also show how wave phenomena in electromagnetism and solid mechanics can be treated using similar mathematical methods. It caters to the needs of the modern student by providing the tools necessary for a mathematical analysis of most kinds of waves liable to be encountered in modern science and technology. At the same time emphasis is laid on the physical background and modeling that requires these tools.
Download or read book Hypersonic Aerothermodynamics written by John J. Bertin and published by AIAA. This book was released on 1994 with total page 644 pages. Available in PDF, EPUB and Kindle. Book excerpt: A modern treatment of hypersonic aerothermodynamics for students, engineers, scientists, and program managers involved in the study and application of hypersonic flight. It assumes an understanding of the basic principles of fluid mechanics, thermodynamics, compressible flow, and heat transfer. Ten chapters address: general characterization of hypersonic flows; basic equations of motion; defining the aerothermodynamic environment; experimental measurements of hypersonic flows; stagnation-region flowfield; the pressure distribution; the boundary layer and convective heat transfer; aerodynamic forces and moments; viscous interactions; and aerothermodynamics and design considerations. Includes sample exercises and homework problems. Annotation copyright by Book News, Inc., Portland, OR
Download or read book Elements of Gas Dynamics written by H. W. Liepmann and published by Courier Corporation. This book was released on 2013-04-09 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: The increasing importance of concepts from compressible fluid flow theory for aeronautical applications makes the republication of this first-rate text particularly timely. Intended mainly for aeronautics students, the text will also be helpful to practicing engineers and scientists who work on problems involving the aerodynamics of compressible fluids. Covering the general principles of gas dynamics to provide a working understanding of the essentials of gas flow, the contents of this book form the foundation for a study of the specialized literature and should give the necessary background for reading original papers on the subject. Topics include introductory concepts from thermodynamics, including entropy, reciprocity relations, equilibrium conditions, the law of mass action and condensation; one-dimensional gasdynamics, one-dimensional wave motion, waves in supersonic flow, flow in ducts and wind tunnels, methods of measurement, the equations of frictionless flow, small-perturbation theory, transonic flow, effects of viscosity and conductivity, and much more. The text includes numerous detailed figures and several useful tables, while concluding exercises demonstrate the application of the material in the text and outline additional subjects. Advanced undergraduate or graduate physics and engineering students with at least a working knowledge of calculus and basic physics will profit immensely from studying this outstanding volume.
Download or read book Aerodynamics for Engineers written by John J. Bertin and published by Cambridge University Press. This book was released on 2021-08-12 with total page 843 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now reissued by Cambridge University Press, this sixth edition covers the fundamentals of aerodynamics using clear explanations and real-world examples. Aerodynamics concept boxes throughout showcase real-world applications, chapter objectives provide readers with a better understanding of the goal of each chapter and highlight the key 'take-home' concepts, and example problems aid understanding of how to apply core concepts. Coverage also includes the importance of aerodynamics to aircraft performance, applications of potential flow theory to aerodynamics, high-lift military airfoils, subsonic compressible transformations, and the distinguishing characteristics of hypersonic flow. Supported online by a solutions manual for instructors, MATLAB® files for example problems, and lecture slides for most chapters, this is an ideal textbook for undergraduates taking introductory courses in aerodynamics, and for graduates taking preparatory courses in aerodynamics before progressing to more advanced study.
Download or read book Compressible Fluid Flow written by P. H. Oosthuizen and published by . This book was released on 1997 with total page 548 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Fluid Mechanics written by Pijush K. Kundu and published by Academic Press. This book was released on 2012 with total page 919 pages. Available in PDF, EPUB and Kindle. Book excerpt: Suitable for both a first or second course in fluid mechanics at the graduate or advanced undergraduate level, this book presents the study of how fluids behave and interact under various forces and in various applied situations - whether in the liquid or gaseous state or both.
Download or read book THE DYNAMICS AND THERMODYNAMICS OF COMPRESSIBLE FLUID FLOW written by ASCHER H. SHAPIRO and published by . This book was released on 1954 with total page 558 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Aerodynamics for Engineering Students written by E. L. Houghton and published by Elsevier. This book was released on 2003-02-12 with total page 605 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aerodynamics for Engineering Students, Fifth Edition, is the leading course text on aerodynamics. The book has been revised to include the latest developments in flow control and boundary layers, and their influence on modern wing design as well as introducing recent advances in the understanding of fundamental fluid dynamics. Computational methods have been expanded and updated to reflect the modern approaches to aerodynamic design and research in the aeronautical industry and elsewhere, and the structure of the text has been developed to reflect current course requirements. The book is designed to be accessible and practical. Theory is developed logically within each chapter with notation, symbols and units well defined throughout, and the text is fully illustrated with worked examples and exercises. The book recognizes the extensive use of computational techniques in contemporary aeronautical design. However, it can be used as a stand-alone text, reflecting the needs of many courses in the field for a thorough grounding in the underlying principles of the subject. The book is an ideal resource for undergraduate and postgraduate students in aeronautical engineering. The classic text, expanded and updated.Includes latest developments in flow control, boundary layers and fluid dynamics.Fully illustrated throughout with illustrations, worked examples and exercises.
Download or read book Compressible Navier Stokes Equations written by Pavel Plotnikov and published by Springer Science & Business Media. This book was released on 2012-08-04 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents the modern state of the art in the mathematical theory of compressible Navier-Stokes equations, with particular emphasis on the applications to aerodynamics. The topics covered include: modeling of compressible viscous flows; modern mathematical theory of nonhomogeneous boundary value problems for viscous gas dynamics equations; applications to optimal shape design in aerodynamics; kinetic theory for equations with oscillating data; new approach to the boundary value problems for transport equations. The monograph offers a comprehensive and self-contained introduction to recent mathematical tools designed to handle the problems arising in the theory.
Download or read book Incompressible Flow written by Ronald L. Panton and published by John Wiley & Sons. This book was released on 2013-08-05 with total page 912 pages. Available in PDF, EPUB and Kindle. Book excerpt: The most teachable book on incompressible flow— now fully revised, updated, and expanded Incompressible Flow, Fourth Edition is the updated and revised edition of Ronald Panton's classic text. It continues a respected tradition of providing the most comprehensive coverage of the subject in an exceptionally clear, unified, and carefully paced introduction to advanced concepts in fluid mechanics. Beginning with basic principles, this Fourth Edition patiently develops the math and physics leading to major theories. Throughout, the book provides a unified presentation of physics, mathematics, and engineering applications, liberally supplemented with helpful exercises and example problems. Revised to reflect students' ready access to mathematical computer programs that have advanced features and are easy to use, Incompressible Flow, Fourth Edition includes: Several more exact solutions of the Navier-Stokes equations Classic-style Fortran programs for the Hiemenz flow, the Psi-Omega method for entrance flow, and the laminar boundary layer program, all revised into MATLAB A new discussion of the global vorticity boundary restriction A revised vorticity dynamics chapter with new examples, including the ring line vortex and the Fraenkel-Norbury vortex solutions A discussion of the different behaviors that occur in subsonic and supersonic steady flows Additional emphasis on composite asymptotic expansions Incompressible Flow, Fourth Edition is the ideal coursebook for classes in fluid dynamics offered in mechanical, aerospace, and chemical engineering programs.
Download or read book Riemann Solvers and Numerical Methods for Fluid Dynamics written by Eleuterio F. Toro and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 635 pages. Available in PDF, EPUB and Kindle. Book excerpt: High resolution upwind and centered methods are today a mature generation of computational techniques applicable to a wide range of engineering and scientific disciplines, Computational Fluid Dynamics (CFD) being the most prominent up to now. This textbook gives a comprehensive, coherent and practical presentation of this class of techniques. The book is designed to provide readers with an understanding of the basic concepts, some of the underlying theory, the ability to critically use the current research papers on the subject, and, above all, with the required information for the practical implementation of the methods. Applications include: compressible, steady, unsteady, reactive, viscous, non-viscous and free surface flows.
Download or read book Efficient High Order Discretizations for Computational Fluid Dynamics written by Martin Kronbichler and published by Springer Nature. This book was released on 2021-01-04 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book introduces modern high-order methods for computational fluid dynamics. As compared to low order finite volumes predominant in today's production codes, higher order discretizations significantly reduce dispersion errors, the main source of error in long-time simulations of flow at higher Reynolds numbers. A major goal of this book is to teach the basics of the discontinuous Galerkin (DG) method in terms of its finite volume and finite element ingredients. It also discusses the computational efficiency of high-order methods versus state-of-the-art low order methods in the finite difference context, given that accuracy requirements in engineering are often not overly strict. The book mainly addresses researchers and doctoral students in engineering, applied mathematics, physics and high-performance computing with a strong interest in the interdisciplinary aspects of computational fluid dynamics. It is also well-suited for practicing computational engineers who would like to gain an overview of discontinuous Galerkin methods, modern algorithmic realizations, and high-performance implementations.