EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Models of Computation for Big Data

Download or read book Models of Computation for Big Data written by Rajendra Akerkar and published by Springer. This book was released on 2018-12-04 with total page 110 pages. Available in PDF, EPUB and Kindle. Book excerpt: The big data tsunami changes the perspective of industrial and academic research in how they address both foundational questions and practical applications. This calls for a paradigm shift in algorithms and the underlying mathematical techniques. There is a need to understand foundational strengths and address the state of the art challenges in big data that could lead to practical impact. The main goal of this book is to introduce algorithmic techniques for dealing with big data sets. Traditional algorithms work successfully when the input data fits well within memory. In many recent application situations, however, the size of the input data is too large to fit within memory. Models of Computation for Big Data, covers mathematical models for developing such algorithms, which has its roots in the study of big data that occur often in various applications. Most techniques discussed come from research in the last decade. The book will be structured as a sequence of algorithmic ideas, theoretical underpinning, and practical use of that algorithmic idea. Intended for both graduate students and advanced undergraduate students, there are no formal prerequisites, but the reader should be familiar with the fundamentals of algorithm design and analysis, discrete mathematics, probability and have general mathematical maturity.

Book Big Data Computing

Download or read book Big Data Computing written by Rajendra Akerkar and published by CRC Press. This book was released on 2013-12-05 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to market forces and technological evolution, Big Data computing is developing at an increasing rate. A wide variety of novel approaches and tools have emerged to tackle the challenges of Big Data, creating both more opportunities and more challenges for students and professionals in the field of data computation and analysis. Presenting a mix

Book Models of Computation

    Book Details:
  • Author :
  • Publisher :
  • Release : 2002-01-01
  • ISBN : 9781586924386
  • Pages : pages

Download or read book Models of Computation written by and published by . This book was released on 2002-01-01 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Data Driven Modeling   Scientific Computation

Download or read book Data Driven Modeling Scientific Computation written by Jose Nathan Kutz and published by . This book was released on 2013-08-08 with total page 657 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combining scientific computing methods and algorithms with modern data analysis techniques, including basic applications of compressive sensing and machine learning, this book develops techniques that allow for the integration of the dynamics of complex systems and big data. MATLAB is used throughout for mathematical solution strategies.

Book Frontiers in Massive Data Analysis

Download or read book Frontiers in Massive Data Analysis written by National Research Council and published by National Academies Press. This book was released on 2013-09-03 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data mining of massive data sets is transforming the way we think about crisis response, marketing, entertainment, cybersecurity and national intelligence. Collections of documents, images, videos, and networks are being thought of not merely as bit strings to be stored, indexed, and retrieved, but as potential sources of discovery and knowledge, requiring sophisticated analysis techniques that go far beyond classical indexing and keyword counting, aiming to find relational and semantic interpretations of the phenomena underlying the data. Frontiers in Massive Data Analysis examines the frontier of analyzing massive amounts of data, whether in a static database or streaming through a system. Data at that scale-terabytes and petabytes-is increasingly common in science (e.g., particle physics, remote sensing, genomics), Internet commerce, business analytics, national security, communications, and elsewhere. The tools that work to infer knowledge from data at smaller scales do not necessarily work, or work well, at such massive scale. New tools, skills, and approaches are necessary, and this report identifies many of them, plus promising research directions to explore. Frontiers in Massive Data Analysis discusses pitfalls in trying to infer knowledge from massive data, and it characterizes seven major classes of computation that are common in the analysis of massive data. Overall, this report illustrates the cross-disciplinary knowledge-from computer science, statistics, machine learning, and application disciplines-that must be brought to bear to make useful inferences from massive data.

Book High Performance Computing for Big Data

Download or read book High Performance Computing for Big Data written by Chao Wang and published by CRC Press. This book was released on 2017-10-16 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: High-Performance Computing for Big Data: Methodologies and Applications explores emerging high-performance architectures for data-intensive applications, novel efficient analytical strategies to boost data processing, and cutting-edge applications in diverse fields, such as machine learning, life science, neural networks, and neuromorphic engineering. The book is organized into two main sections. The first section covers Big Data architectures, including cloud computing systems, and heterogeneous accelerators. It also covers emerging 3D IC design principles for memory architectures and devices. The second section of the book illustrates emerging and practical applications of Big Data across several domains, including bioinformatics, deep learning, and neuromorphic engineering. Features Covers a wide range of Big Data architectures, including distributed systems like Hadoop/Spark Includes accelerator-based approaches for big data applications such as GPU-based acceleration techniques, and hardware acceleration such as FPGA/CGRA/ASICs Presents emerging memory architectures and devices such as NVM, STT- RAM, 3D IC design principles Describes advanced algorithms for different big data application domains Illustrates novel analytics techniques for Big Data applications, scheduling, mapping, and partitioning methodologies Featuring contributions from leading experts, this book presents state-of-the-art research on the methodologies and applications of high-performance computing for big data applications. About the Editor Dr. Chao Wang is an Associate Professor in the School of Computer Science at the University of Science and Technology of China. He is the Associate Editor of ACM Transactions on Design Automations for Electronics Systems (TODAES), Applied Soft Computing, Microprocessors and Microsystems, IET Computers & Digital Techniques, and International Journal of Electronics. Dr. Chao Wang was the recipient of Youth Innovation Promotion Association, CAS, ACM China Rising Star Honorable Mention (2016), and best IP nomination of DATE 2015. He is now on the CCF Technical Committee on Computer Architecture, CCF Task Force on Formal Methods. He is a Senior Member of IEEE, Senior Member of CCF, and a Senior Member of ACM.

Book Machine Learning Models and Algorithms for Big Data Classification

Download or read book Machine Learning Models and Algorithms for Big Data Classification written by Shan Suthaharan and published by Springer. This book was released on 2015-10-20 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents machine learning models and algorithms to address big data classification problems. Existing machine learning techniques like the decision tree (a hierarchical approach), random forest (an ensemble hierarchical approach), and deep learning (a layered approach) are highly suitable for the system that can handle such problems. This book helps readers, especially students and newcomers to the field of big data and machine learning, to gain a quick understanding of the techniques and technologies; therefore, the theory, examples, and programs (Matlab and R) presented in this book have been simplified, hardcoded, repeated, or spaced for improvements. They provide vehicles to test and understand the complicated concepts of various topics in the field. It is expected that the readers adopt these programs to experiment with the examples, and then modify or write their own programs toward advancing their knowledge for solving more complex and challenging problems. The presentation format of this book focuses on simplicity, readability, and dependability so that both undergraduate and graduate students as well as new researchers, developers, and practitioners in this field can easily trust and grasp the concepts, and learn them effectively. It has been written to reduce the mathematical complexity and help the vast majority of readers to understand the topics and get interested in the field. This book consists of four parts, with the total of 14 chapters. The first part mainly focuses on the topics that are needed to help analyze and understand data and big data. The second part covers the topics that can explain the systems required for processing big data. The third part presents the topics required to understand and select machine learning techniques to classify big data. Finally, the fourth part concentrates on the topics that explain the scaling-up machine learning, an important solution for modern big data problems.

Book New Frontiers in High Performance Computing and Big Data

Download or read book New Frontiers in High Performance Computing and Big Data written by G. Fox and published by IOS Press. This book was released on 2017-11-14 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the last four decades, parallel computing platforms have increasingly formed the basis for the development of high performance systems primarily aimed at the solution of intensive computing problems, and the application of parallel computing systems has also become a major factor in furthering scientific research. But such systems also offer the possibility of solving the problems encountered in the processing of large-scale scientific data sets, as well as in the analysis of Big Data in the fields of medicine, social media, marketing, economics etc. This book presents papers from the International Research Workshop on Advanced High Performance Computing Systems, held in Cetraro, Italy, in July 2016. The workshop covered a wide range of topics and new developments related to the solution of intensive and large-scale computing problems, and the contributions included in this volume cover aspects of the evolution of parallel platforms and highlight some of the problems encountered with the development of ever more powerful computing systems. The importance of future large-scale data science applications is also discussed. The book will be of particular interest to all those involved in the development or application of parallel computing systems.

Book Challenges and Opportunities for the Convergence of IoT  Big Data  and Cloud Computing

Download or read book Challenges and Opportunities for the Convergence of IoT Big Data and Cloud Computing written by Velayutham, Sathiyamoorthi and published by IGI Global. This book was released on 2021-01-29 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: In today’s market, emerging technologies are continually assisting in common workplace practices as companies and organizations search for innovative ways to solve modern issues that arise. Prevalent applications including internet of things, big data, and cloud computing all have noteworthy benefits, but issues remain when separately integrating them into the professional practices. Significant research is needed on converging these systems and leveraging each of their advantages in order to find solutions to real-time problems that still exist. Challenges and Opportunities for the Convergence of IoT, Big Data, and Cloud Computing is a pivotal reference source that provides vital research on the relation between these technologies and the impact they collectively have in solving real-world challenges. While highlighting topics such as cloud-based analytics, intelligent algorithms, and information security, this publication explores current issues that remain when attempting to implement these systems as well as the specific applications IoT, big data, and cloud computing have in various professional sectors. This book is ideally designed for academicians, researchers, developers, computer scientists, IT professionals, practitioners, scholars, students, and engineers seeking research on the integration of emerging technologies to solve modern societal issues.

Book Big Data

    Book Details:
  • Author : Kuan-Ching Li
  • Publisher : CRC Press
  • Release : 2015-02-23
  • ISBN : 1482240564
  • Pages : 478 pages

Download or read book Big Data written by Kuan-Ching Li and published by CRC Press. This book was released on 2015-02-23 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: As today's organizations are capturing exponentially larger amounts of data than ever, now is the time for organizations to rethink how they digest that data. Through advanced algorithms and analytics techniques, organizations can harness this data, discover hidden patterns, and use the newly acquired knowledge to achieve competitive advantages.Pre

Book The Internet of Things and Big Data Analytics

Download or read book The Internet of Things and Big Data Analytics written by Pethuru Raj and published by CRC Press. This book was released on 2020-06-07 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book comprehensively conveys the theoretical and practical aspects of IoT and big data analytics with the solid contributions from practitioners as well as academicians. This book examines and expounds the unique capabilities of the big data analytics platforms in capturing, cleansing and crunching IoT device/sensor data in order to extricate actionable insights. A number of experimental case studies and real-world scenarios are incorporated in this book in order to instigate our book readers. This book Analyzes current research and development in the domains of IoT and big data analytics Gives an overview of latest trends and transitions happening in the IoT data analytics space Illustrates the various platforms, processes, patterns, and practices for simplifying and streamlining IoT data analytics The Internet of Things and Big Data Analytics: Integrated Platforms and Industry Use Cases examines and accentuates how the multiple challenges at the cusp of IoT and big data can be fully met. The device ecosystem is growing steadily. It is forecast that there will be billions of connected devices in the years to come. When these IoT devices, resource-constrained as well as resource-intensive, interact with one another locally and remotely, the amount of multi-structured data generated, collected, and stored is bound to grow exponentially. Another prominent trend is the integration of IoT devices with cloud-based applications, services, infrastructures, middleware solutions, and databases. This book examines the pioneering technologies and tools emerging and evolving in order to collect, pre-process, store, process and analyze data heaps in order to disentangle actionable insights.

Book Big Data in Computational Social Science and Humanities

Download or read book Big Data in Computational Social Science and Humanities written by Shu-Heng Chen and published by Springer. This book was released on 2018-11-21 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited volume focuses on big data implications for computational social science and humanities from management to usage. The first part of the book covers geographic data, text corpus data, and social media data, and exemplifies their concrete applications in a wide range of fields including anthropology, economics, finance, geography, history, linguistics, political science, psychology, public health, and mass communications. The second part of the book provides a panoramic view of the development of big data in the fields of computational social sciences and humanities. The following questions are addressed: why is there a need for novel data governance for this new type of data?, why is big data important for social scientists?, and how will it revolutionize the way social scientists conduct research? With the advent of the information age and technologies such as Web 2.0, ubiquitous computing, wearable devices, and the Internet of Things, digital society has fundamentally changed what we now know as "data", the very use of this data, and what we now call "knowledge". Big data has become the standard in social sciences, and has made these sciences more computational. Big Data in Computational Social Science and Humanities will appeal to graduate students and researchers working in the many subfields of the social sciences and humanities.

Book Systems Simulation and Modeling for Cloud Computing and Big Data Applications

Download or read book Systems Simulation and Modeling for Cloud Computing and Big Data Applications written by Dinesh Peter and published by Academic Press. This book was released on 2020-02-26 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: Systems Simulation and Modelling for Cloud Computing and Big Data Applications provides readers with the most current approaches to solving problems through the use of models and simulations, presenting SSM based approaches to performance testing and benchmarking that offer significant advantages. For example, multiple big data and cloud application developers and researchers can perform tests in a controllable and repeatable manner. Inspired by the need to analyze the performance of different big data processing and cloud frameworks, researchers have introduced several benchmarks, including BigDataBench, BigBench, HiBench, PigMix, CloudSuite and GridMix, which are all covered in this book. Despite the substantial progress, the research community still needs a holistic, comprehensive big data SSM to use in almost every scientific and engineering discipline involving multidisciplinary research. SSM develops frameworks that are applicable across disciplines to develop benchmarking tools that are useful in solutions development. - Examines the methodology and requirements of benchmarking big data and cloud computing tools, advances in big data frameworks and benchmarks for large-scale data analytics, and frameworks for benchmarking and predictive analytics in big data deployment - Discusses applications using big data benchmarks, such as BigDataBench, BigBench, HiBench, MapReduce, HPCC, ECL, HOBBIT, GridMix and PigMix, and applications using big data frameworks, such as Hadoop, Spark, Samza, Flink and SQL frameworks - Covers development of big data benchmarks to evaluate workloads in state-of-the-practice heterogeneous hardware platforms, advances in modeling and simulation tools for performance evaluation, security problems and scalable cloud computing environments

Book Research Anthology on Architectures  Frameworks  and Integration Strategies for Distributed and Cloud Computing

Download or read book Research Anthology on Architectures Frameworks and Integration Strategies for Distributed and Cloud Computing written by Management Association, Information Resources and published by IGI Global. This book was released on 2021-01-25 with total page 2700 pages. Available in PDF, EPUB and Kindle. Book excerpt: Distributed systems intertwine with our everyday lives. The benefits and current shortcomings of the underpinning technologies are experienced by a wide range of people and their smart devices. With the rise of large-scale IoT and similar distributed systems, cloud bursting technologies, and partial outsourcing solutions, private entities are encouraged to increase their efficiency and offer unparalleled availability and reliability to their users. The Research Anthology on Architectures, Frameworks, and Integration Strategies for Distributed and Cloud Computing is a vital reference source that provides valuable insight into current and emergent research occurring within the field of distributed computing. It also presents architectures and service frameworks to achieve highly integrated distributed systems and solutions to integration and efficient management challenges faced by current and future distributed systems. Highlighting a range of topics such as data sharing, wireless sensor networks, and scalability, this multi-volume book is ideally designed for system administrators, integrators, designers, developers, researchers, academicians, and students.

Book Artificial Intelligence for Computational Modeling of the Heart

Download or read book Artificial Intelligence for Computational Modeling of the Heart written by Tommaso Mansi and published by Academic Press. This book was released on 2019-11-28 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence for Computational Modeling of the Heart presents recent research developments towards streamlined and automatic estimation of the digital twin of a patient's heart by combining computational modeling of heart physiology and artificial intelligence. The book first introduces the major aspects of multi-scale modeling of the heart, along with the compromises needed to achieve subject-specific simulations. Reader will then learn how AI technologies can unlock robust estimations of cardiac anatomy, obtain meta-models for real-time biophysical computations, and estimate model parameters from routine clinical data. Concepts are all illustrated through concrete clinical applications.

Book Big Data and High Performance Computing

Download or read book Big Data and High Performance Computing written by L. Grandinetti and published by IOS Press. This book was released on 2015-10-20 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big Data has been much in the news in recent years, and the advantages conferred by the collection and analysis of large datasets in fields such as marketing, medicine and finance have led to claims that almost any real world problem could be solved if sufficient data were available. This is of course a very simplistic view, and the usefulness of collecting, processing and storing large datasets must always be seen in terms of the communication, processing and storage capabilities of the computing platforms available. This book presents papers from the International Research Workshop, Advanced High Performance Computing Systems, held in Cetraro, Italy, in July 2014. The papers selected for publication here discuss fundamental aspects of the definition of Big Data, as well as considerations from practice where complex datasets are collected, processed and stored. The concepts, problems, methodologies and solutions presented are of much more general applicability than may be suggested by the particular application areas considered. As a result the book will be of interest to all those whose work involves the processing of very large data sets, exascale computing and the emerging fields of data science

Book Handbook of Research on Cloud Computing and Big Data Applications in IoT

Download or read book Handbook of Research on Cloud Computing and Big Data Applications in IoT written by Gupta, B. B. and published by IGI Global. This book was released on 2019-04-12 with total page 637 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today, cloud computing, big data, and the internet of things (IoT) are becoming indubitable parts of modern information and communication systems. They cover not only information and communication technology but also all types of systems in society including within the realms of business, finance, industry, manufacturing, and management. Therefore, it is critical to remain up-to-date on the latest advancements and applications, as well as current issues and challenges. The Handbook of Research on Cloud Computing and Big Data Applications in IoT is a pivotal reference source that provides relevant theoretical frameworks and the latest empirical research findings on principles, challenges, and applications of cloud computing, big data, and IoT. While highlighting topics such as fog computing, language interaction, and scheduling algorithms, this publication is ideally designed for software developers, computer engineers, scientists, professionals, academicians, researchers, and students.