EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Models and Analysis of Locomotion and Gripping in Soft Robots

Download or read book Models and Analysis of Locomotion and Gripping in Soft Robots written by Xuance Zhou and published by . This book was released on 2015 with total page 76 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent designs of soft robots and nano robots feature locomotion mechanisms that entail orchestrating changes to intrinsic curvature or length to enable the robot's limbs to either stick, adhere, or slip on the robot's workspace. The resulting locomotion mechanism has several features in common with peristaltic locomotion that can be found in the animal world. One of the purposes of this dissertation is to examine the feasibility of, and design guidelines for, a locomotion mechanism that exploits the control of intrinsic curvature on a rough surface featuring stick, slip, and adhesion interaction. Our work complements the ever-increasing body of work on soft robots that is primarily focused on the design and fabrication of these systems. Modeling and analyzing these robots is challenging because of the difficulties in faithfully modeling the flexible nature of their components. The study of locomotion presented in this dissertation is composed of two parts. First, we consider the simplest possible model for a soft robot. The resulting model is a lumped parameter system featuring a pair of mass particles and a spring with a variable natural length. By appropriately varying the natural length as a function of time l0(t), we show how locomotion can be achieved and examine the energy efficiency for a variety of choices of l0(t). We then take the lessons gained from this model and use them to understand the locomotion of a block that is propelled on a rough surface with the aid of a flexible arm. Our analysis of the rod-based model for this system focuses on the development of a structurally stable mechanism to move the block. This analysis exploits recent results on stability of adhered rods that we supplement with a new discretized stability criterion. Beyond locomotion, soft robots have the ability to gently grip and maneuver objects with open-loop kinematic control. Guided by several recent designs and implementations of soft robot hands, we exploit our earlier works on locomotion and analyze a rod-based model for the fingers in the hand of a soft robot. We show precisely how gripping is achieved and how the performance can be affected by varying the system's parameters. The designs of interest feature pneumatic control of the soft robot and we model this actuation as a varying intrinsic curvature profile of the rod. Our work provides a framework for the theoretical analysis of the soft robot and the resulting analysis can also be used to develop some design guidelines.

Book Soft Robotics

    Book Details:
  • Author : Gareth J. Monkman
  • Publisher : Bentham Science Publishers
  • Release : 2022-04-08
  • ISBN : 9815051733
  • Pages : 179 pages

Download or read book Soft Robotics written by Gareth J. Monkman and published by Bentham Science Publishers. This book was released on 2022-04-08 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: Soft robotics is a subfield of robotics that encompasses the design and fabrication of robots with soft and compliant materials. Soft robots represent components like human prosthetics or biomimicking systems. Soft robotics relies on technically astute designs based on the correct choice of materials to enable a level of dexterity not possible with rigid components alone. The basic prime movers (actuators) and perception (sensors) require control systems capable of accommodating imprecise feedback data and often unpredictable reaction times. Mobility in such robots is more akin to entomological or marine systems than conventional guided vehicles. This reference is a guide to materials and systems used in soft robotics. If features 6 chapters contributed by robotics experts that review fundamental and applied topics that are important for understanding the requirements of soft robotics design projects and the physics of the polymers involved. Chapters are organized for easy reading and include references. The topics include: - Aspects of materials processing and engineering for the development of soft robotic devices - A review on biological gripping principles and their application to robotics - Information about self-sensing electroadhesive polymer grippers with magnetically controllable surface geometry - Theoretical and experimental investigations of magnetic hybrid materials - Modeling and dynamic analysis of a novel rotary soft robotic arm by transfer matrix method - Design and control of a portable continuum robot for pipe inspection assisted by a rigid manipulator This book is a suitable reference for scholars and engineers who are seeking knowledge about materials and design principles in soft robotics with its practical applications.

Book Advances in Modelling and Control of Soft Robots

Download or read book Advances in Modelling and Control of Soft Robots written by Concepción A. Monje and published by Frontiers Media SA. This book was released on 2021-07-14 with total page 175 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Neurobiology of Motor Control

Download or read book Neurobiology of Motor Control written by Scott L. Hooper and published by John Wiley & Sons. This book was released on 2017-09-05 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: A multi-disciplinary look at the current state of knowledge regarding motor control and movement—from molecular biology to robotics The last two decades have seen a dramatic increase in the number of sophisticated tools and methodologies for exploring motor control and movement. Multi-unit recordings, molecular neurogenetics, computer simulation, and new scientific approaches for studying how muscles and body anatomy transform motor neuron activity into movement have helped revolutionize the field. Neurobiology of Motor Control brings together contributions from an interdisciplinary group of experts to provide a review of the current state of knowledge about the initiation and execution of movement, as well as the latest methods and tools for investigating them. The book ranges from the findings of basic scientists studying model organisms such as mollusks and Drosophila, to biomedical researchers investigating vertebrate motor production to neuroengineers working to develop robotic and smart prostheses technologies. Following foundational chapters on current molecular biological techniques, neuronal ensemble recording, and computer simulation, it explores a broad range of related topics, including the evolution of motor systems, directed targeted movements, plasticity and learning, and robotics. Explores motor control and movement in a wide variety of organisms, from simple invertebrates to human beings Offers concise summaries of motor control systems across a variety of animals and movement types Explores an array of tools and methodologies, including electrophysiological techniques, neurogenic and molecular techniques, large ensemble recordings, and computational methods Considers unresolved questions and how current scientific advances may be used to solve them going forward Written specifically to encourage interdisciplinary understanding and collaboration, and offering the most wide-ranging, timely, and comprehensive look at the science of motor control and movement currently available, Neurobiology of Motor Control is a must-read for all who study movement production and the neurobiological basis of movement—from molecular biologists to roboticists.

Book Control and Analysis of Soft Body Locomotion on a Robotic Platform

Download or read book Control and Analysis of Soft Body Locomotion on a Robotic Platform written by Akhil Kandhari and published by . This book was released on 2020 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: Earthworms locomote using traveling waves of segment contraction and expansion, which when symmetric, result in straight-line locomotion and when biased result in turning. The mechanics of the soft body permit a large range of possible body shapes which both comply with the environment and contribute to directed locomotion. Inspired by earthworms, a new platform: Compliant Modular Mesh Worm robot (CMMWorm) is presented to study this type of locomotion. Using this platform as the basis for evaluation, I show that locomotion efficiency is sensitive to body stiffness. Furthermore, using simplified beam theory, I demonstrate the power required for peristaltic locomotion is related to the geometrical properties, structural properties and gait pattern of the robot. The analyses of peristaltic locomotion demonstrate energetic losses to frictional slip is the key reason for loss of power efficiency. By representing segments as isosceles trapezoids with reasonable ranges of motion, I determine control waves that in simulation do not require slip. I apply the resulting control wave on our robotic platform that leads to a decrease in prediction error, improving kinematic motion prediction for planning. To mimic the ability of an earthworm to adapt to external perturbations, I equipped the CMMWorm with pressure and stretch sensors for improving locomotion efficiency in constrained environments. I show that using a closed-loop controller helps eliminate slip in constrained environments thereby increasing locomotion efficiency. These analyses can help in the development of design criteria and control for future soft robotic peristaltic devices.

Book Quadrupedal Locomotion

Download or read book Quadrupedal Locomotion written by Pablo González de Santos and published by Springer Science & Business Media. This book was released on 2007-02-17 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Walking machines have advantages over traditional vehicles, and have already accomplished tasks that wheeled or tracked robots cannot handle. Nevertheless, their use in industry and services is currently limited in scope. This book brings together methods and techniques that have been developed to deal with obstacles to wider acceptance of legged robots. Part I provides an historical overview. Part II concentrates on control techniques, as applied to Four-legged robots.

Book Creating Brain Like Intelligence

Download or read book Creating Brain Like Intelligence written by Bernhard Sendhoff and published by Springer Science & Business Media. This book was released on 2009-04-02 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: TheInternationalSymposiumCreatingBrain-LikeIntelligencewasheldinFeb- ary 2007 in Germany. The symposium brought together notable scientists from di?erent backgrounds and with di?erent expertise related to the emerging ?eld of brain-like intelligence. Our understanding of the principles behind brain-like intelligence is still limited. After all, we have had to acknowledge that after tremendous advances in areas like neural networks, computational and arti?cial intelligence (a ?eld that had just celebrated its 50 year anniversary) and fuzzy systems, we are still not able to mimic even the lower-level sensory capabilities of humans or animals. We asked what the biggest obstacles are and how we could gain ground toward a scienti?c understanding of the autonomy, ?exibility, and robustness of intelligent biological systems as they strive to survive. New principles are usually found at the interfaces between existing disciplines, and traditional boundaries between disciplines have to be broken down to see how complex systems become simple and how the puzzle can be assembled. During the symposium we could identify some recurring themes that p- vaded many of the talks and discussions. The triad of structure, dynamics and environment,theroleoftheenvironmentasanactivepartnerinshapingsystems, adaptivity on all scales (learning, development, evolution) and the amalga- tion of an internal and external world in brain-like intelligence rate high among them. Each of us is rooted in a certain community which we have to serve with the results of our research. Looking beyond our ?elds and working at the interfaces between established areas of research requires e?ort and an active process.

Book Optimization based Inverse Model of Soft Robots  with Contact Handling

Download or read book Optimization based Inverse Model of Soft Robots with Contact Handling written by Eulalie Coevoet and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Soft robotics draws its inspiration from nature, from the way living organisms move and adapt their shape to their environment. In opposition to traditional rigid robots, soft robots are built from highly compliant materials, allowing them to accomplish tasks with more flexibility. They are safer when working in fragile environment, which allows for potential use of soft robotics in the fields of manufacturing and medicine.Yet, the field of soft robotics brings new challenges, in particular for modeling and control. Within this thesis we aim at providing generic methods for soft robot modeling, without assumptions on the geometry. The methods are based on the finite element method to capture the deformations of the robot's structure and of its environment when deformable. We formulate the problem of their inverse kinematics and dynamics as optimization programs, allowing easy handling of constraints on actuation and singularity problems. We are able to control several types of actuation, such as cable, pneumatic and hydraulic actuations.Moreover, most of the applications involve interaction of the robot with obstacles. Yet soft robots kinematics is highly dependent on environmental factors. We propose new methods that include contacts into the optimization process. These methods make an important step as we think that the knowledge of contacts in the modeling is all the more important. Finally, we propose to control some soft robots during locomotion and grasping tasks which require the use of contact with static friction. We give a particular attention to provide solutions with real-time performance, allowing online control in evolving environments.

Book Computational Methods in Slender Structures and Soft Robots

Download or read book Computational Methods in Slender Structures and Soft Robots written by Weicheng Huang and published by . This book was released on 2021 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: Slender structures, existing in both natural environments (tendrils) and man-made systems (soft robots), often undergo geometrically nonlinear deformations and dramatic topological changes when subjected to simple boundary conditions or moderate external actuations, which pose extensive challenges to the traditional numerical and analytical methods. This dissertation focuses on the Discrete Differential Geometry (DDG)-based numerical frameworks for simulating the mechanical response in slender structures and soft robots, and makes four major contributions: First, we use a planar rod theory and incorporate Coulomb frictional contact, elastic/inelastic collision with ground, and inertial effects in a physically accurate manner, to simulate the dynamics of shape memory alloy (SMA)-powered soft robots. Our simulations show quantitative agreement when compared against with experiments, suggesting that our numerical approach represents a promising step toward the ultimate goal of a computational framework for soft robotic engineering. We then combine the same planar rod framework with a naive fluid-structure interaction model to perform the swimming of a seastar-inspired soft robot in water. Secondly, we numerically explore the propulsion of bacteria flagella in a low Reynolds fluid. We study the locomotion of a bacteria-inspired soft robot. Our numerical framework uses (i) Discrete Elastic Rods (DER) method to account for the elasticity of soft filament, (ii) Lighthill's Slender Body Theory (LSBT) for the long term hydrodynamic flow by helical flagellum, and (iii) Higdon's model for the hydrodynamics from spherical head. A data-driven approach is later employed to develop a control algorithm such that our flagella-inspired robot can follow a prescribed trajectory only by changing its rotation frequency. Then, to investigate the bundling behavior between two soft helical rods rotating side by side in a viscous fluid, we implement a coupled DER and Regularized Stokeslet Segment (RSS) framework. The contact between two rods is also considered in our numerical tool. A novel bundling behavior between two nearby helical rods is uncovered, whereby the filaments come across each other above a critical angular velocity. Our third contribution is to present a numerical method for both forward physics-based simulations and inverse form-finding problems in elastic gridshells. Our numerical framework on elastic gridshell first decomposes this special structure into multiple one dimensional rods and linkers, which can be performed by the well-established Discrete Elastic Rods (DER) algorithm. A stiffed spring between rods and linkages is later introduced to ensure the bending and twisting coupling at joint area. The inverse form finding problem -- compute the initial planar pattern from a given 3D configuration -- is directly solved by a contact-based procedure, without using any the conventional optimization-based algorithms. Several examples are used to show the effectiveness of the inverse design process. Finally, we compare Kirchhoff rod model, Sadowsky ribbon model, and FvK plate equations, to systematically characterize a group of slender structures, from narrow strip to wide plate. We consider a pre-buckled band under lateral end translation and quantity its supercritical pitchfork bifurcation. The one dimensional anisotropic rod can give a reasonable prediction when the strip is narrow, while fails to capture its width effect. A two dimensional plate approach, on the other hand, accurately anticipates the nonlinear deformations and the critical supercritical pitchfork points for both narrow and wide plates. We finally discuss in detail the issues of traditional one dimensional ribbon models at the inflection points, and then use an extensible ribbon model to bridge the gap between the Kirchhoff rod model and the classical Sadowsky ribbon model.

Book Bioinspired Legged Locomotion

Download or read book Bioinspired Legged Locomotion written by Maziar Ahmad Sharbafi and published by Butterworth-Heinemann. This book was released on 2017-11-21 with total page 698 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bioinspired Legged Locomotion: Models, Concepts, Control and Applications explores the universe of legged robots, bringing in perspectives from engineering, biology, motion science, and medicine to provide a comprehensive overview of the field. With comprehensive coverage, each chapter brings outlines, and an abstract, introduction, new developments, and a summary. Beginning with bio-inspired locomotion concepts, the book's editors present a thorough review of current literature that is followed by a more detailed view of bouncing, swinging, and balancing, the three fundamental sub functions of locomotion. This part is closed with a presentation of conceptual models for locomotion. Next, the book explores bio-inspired body design, discussing the concepts of motion control, stability, efficiency, and robustness. The morphology of legged robots follows this discussion, including biped and quadruped designs. Finally, a section on high-level control and applications discusses neuromuscular models, closing the book with examples of applications and discussions of performance, efficiency, and robustness. At the end, the editors share their perspective on the future directions of each area, presenting state-of-the-art knowledge on the subject using a structured and consistent approach that will help researchers in both academia and industry formulate a better understanding of bioinspired legged robotic locomotion and quickly apply the concepts in research or products. Presents state-of-the-art control approaches with biological relevance Provides a thorough understanding of the principles of organization of biological locomotion Teaches the organization of complex systems based on low-dimensional motion concepts/control Acts as a guideline reference for future robots/assistive devices with legged architecture Includes a selective bibliography on the most relevant published articles

Book Morpho functional Machines  The New Species

Download or read book Morpho functional Machines The New Species written by F. Hara and published by Springer Science & Business Media. This book was released on 2011-06-28 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Morpho-functional Machines are a set of tools for investigating the design of embodied intelligence in autonomous bio-artifact systems. The focus in Morpho-functional Machines is on the balance of morphology, materials, and control; intelligent behavior emerges from the interaction of an autonomous system with a real-world environment. How, then, should body morphology, body materials, and sensory systems be designed to achieve a certain set of tasks or desired behaviors in a particular environment? This and other questions were addressed at the International Workshop on Morpho-functional Machines held in Tokyo in 2001. Collected here are the revised papers from the workshop, providing a new perspective for understanding embodied intelligence. Presenting the innovative concept of Morpho-functional Machines, this book is a valuable source for scientists and engineers working in ethnology, cognitive sciences, robotic engineering, and artificial intelligence.

Book Electroactive Polymers for Robotic Applications

Download or read book Electroactive Polymers for Robotic Applications written by Kwang J. Kim and published by Springer Science & Business Media. This book was released on 2007-01-17 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the fundamental properties, modeling, and demonstration of Electroactive polymers in robotic applications. It particularly details artificial muscles and sensors. In addition, the book discusses the properties and uses in robotics applications of ionic polymer–metal composite actuators and dielectric elastomers.

Book Soft Robotic Actuation Strategies for Locomotion in Granular Substrates

Download or read book Soft Robotic Actuation Strategies for Locomotion in Granular Substrates written by Daniel Hernandez Ortiz and published by . This book was released on 2018 with total page 45 pages. Available in PDF, EPUB and Kindle. Book excerpt: Soft bodied organisms such as annelids may exploit body compliance by using their hydrostatic skeletons and muscles to burrow in granular substrates. The prevalence and performance of soft structures in biology has inspired researchers to incorporate soft materials into new robotic systems with adaptive and robust qualities. In this work, we investigate the design of soft digging robots inspired by the bristled worm, (polychaetas). The behavior of soft structures in granular environments is complex and still not well understood. We detail the experiments, design, and fabrication of a soft robotic system capable of maneuvering in granular substrates and investigate actuation strategies for drag reduction inspired by the bristled worm's biomechanical behaviors. The soft robotic system is composed of three main actuator segments, with the leading segment being the focus of interest for analysis of this complex locomotion. We implemented and studied two methods of actuation in our soft-robot: peristaltic expansion and bi-directional bending. We compared the drag force experienced by the leading segments that reproduce these active strategies to the force experience by rigid, and unactuated, soft versions. We find that biomechanical behaviors can have a significant impact on locomotion strategies in granular substrates. Based on these results, we demonstrate a tethered, three-segment soft robot capable of digging through granular media. In summary, we find that over a range of movement speeds, soft-robots performing peristaltic expansion at their tip experience the least drag force. Soft-robots with unactuated tips experienced the largest drag resistance emphasizing the importance of controlling the tip stiffness to enable effective subsurface movement.

Book Modern Robotics

    Book Details:
  • Author : Kevin M. Lynch
  • Publisher : Cambridge University Press
  • Release : 2017-05-25
  • ISBN : 1107156300
  • Pages : 545 pages

Download or read book Modern Robotics written by Kevin M. Lynch and published by Cambridge University Press. This book was released on 2017-05-25 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: A modern and unified treatment of the mechanics, planning, and control of robots, suitable for a first course in robotics.

Book Actuation Aware Simplified Dynamic Models for Robotic Legged Locomotion

Download or read book Actuation Aware Simplified Dynamic Models for Robotic Legged Locomotion written by Romeo Orsolino and published by Istitituto Italiano di Tecnologia (IIT). This book was released on 2019-02-14 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the recent years, we witnessed an ever increasing number of successful hardware implementations of motion planners for legged robots. If one common property is to be identified among these real-world applications, that is the ability of performing online (re)planning. Online planning is forgiving, in the sense that it allows to relentlessly compensate for external disturbances of whatever form they might be, ranging from unmodeled dynamics to external pushes or unexpected obstacles and, at the same time, follow user commands. Initially replanning was restricted only to heuristic-based planners that exploit the low computational effort of simplified dynamic models. Such models deliberately only capture the main dynamics of the system, thus leaving to the controllers the issue of anchoring the desired trajectory to the whole body model of the robot. In recent years, however, a number of novel Model Predictive Control (MPC) approaches have been presented that attempt to increase the accuracy of the obtained solutions by employing more complex dynamic formulations, this without trading-off the computational efficiency of simplified models. In this dissertation, as an example of successful hardware implementation of heuristics and simplified model-based locomotion, I first describe the control framework that I developed for the generation of an omni-directional bounding gait for the HyQ quadruped robot. By analyzing the stable limit cycles for the sagittal dynamics and the Center of Pressure (CoP) for the lateral stabilization, the described locomotion framework is able to achieve a stable bounding gait while adapting the footsteps to terrains of mild roughness and to sudden changes of the user desired linear and angular velocities. The next topic reported and second contribution of this dissertation is my effort to formulate more descriptive simplified dynamic models, without compromising their computational efficiency, in order to extend the navigation capabilities of legged robots to complex geometry environments. With this in mind, I investigated the possibility of incorporating feasibility constraints in these template models and, in particular, I focused on the joint-torque limits, which are usually neglected at the planning stage. Along the same direction, the third contribution discussed in this thesis is the formulation of the so called actuation wrench polytope (AWP), defined as the set of feasible wrenches that an articulated robot can perform given its actuation limits. Interesected with the contact wrench cone (CWC), this yields a new 6D polytope that we name feasible wrench polytope (FWP), defined as the set of all wrenches that a legged robot can realize given its actuation capabilities and the friction constraints. Results are reported where, thanks to efficient computational geometry algorithms and to appropriate approximations, the FWP is employed for a one-step receding horizon optimization of center of mass trajectory and phase durations given a predefined step sequence on rough terrains. In order to augment the robot’s reachable workspace, I then decided to trade off the generality of the FWP formulation for a suboptimal scenario in which a quasi-static motion is assumed. This led to the definition of a new concept that I refer to under the name of feasible region. This can be seen as a different variant of 2D linear subspaces orthogonal to gravity where the robot is guaranteed to place its own center of mass (CoM) while being able to carry its own body weight given its actuation capabilities. The feasible region provides an intuitive tool for the visualization in 2D of the actuation capabilities of legged robots. The low dimensionality of the feasible region also enables the concurrent online optimization of actuation consistent CoM trajectories and target foothold locations on rough terrains, which can hardly be achieved with other state-of-the-art approaches.

Book Bioinspired Sensing  Actuation  and Control in Underwater Soft Robotic Systems

Download or read book Bioinspired Sensing Actuation and Control in Underwater Soft Robotic Systems written by Derek A. Paley and published by Springer Nature. This book was released on 2020-11-06 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes representative research from the state‐of‐the‐art in the emerging field of soft robotics, with a special focus on bioinspired soft robotics for underwater applications. Topics include novel materials, sensors, actuators, and system design for distributed estimation and control of soft robotic appendages inspired by the octopus and seastar. It summarizes the latest findings in an emerging field of bioinspired soft robotics for the underwater domain, primarily drawing from (but not limited to) an ongoing research program in bioinspired autonomous systems sponsored by the Office of Naval Research. The program has stimulated cross‐disciplinary research in biology, material science, computational mechanics, and systems and control for the purpose of creating novel robotic appendages for maritime applications. The book collects recent results in this area.

Book Modeling and Analysis of Six Legged Robots

Download or read book Modeling and Analysis of Six Legged Robots written by Shibendu Shekhar Roy and published by LAP Lambert Academic Publishing. This book was released on 2012-04 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last four decades, the legged robots had been widely investigated due to their better mobility and terrain adaptability characteristics, while moving on natural terrains. Kinematics, dynamics, stability and energy consumption analysis of different types of gaits are the key elements of study in the field of multi-legged robots' locomotion. In the present book, a systematic analytical model has been developed to study the kinematics and dynamics along with energy efficiency and stability of a realistic six-legged robot, negotiating straight-forward, crab and turning motions. Moreover, soft computing-based models, namely back-propagation algorithm-tuned multiple adaptive neuro-fuzzy inference systems; genetic algorithm-tuned multiple adaptive neuro-fuzzy inference systems; genetic algorithm-tuned coactive neuro-fuzzy inference systems and genetic algorithm-tuned back-propagation neural networks, have been developed to predict specific energy consumption and normalized energy stability margin in straight, crab and turning motions of the said robot. This book could be useful to researchers and technologists working in the field of mobile robots.