EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Decision Making Under Risk and Uncertainty

Download or read book Decision Making Under Risk and Uncertainty written by J. Geweke and published by Springer. This book was released on 2012-10-04 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: As desired, the infonnation demand correspondence is single valued at equilibrium prices. Hence no planner is needed to assign infonnation allocations to individuals. Proposition 4. For any given infonnation price system p E . P (F *), almost every a E A demands a unique combined infonnation structure (although traders may be indifferent among partial infonnation sales from different information allocations, etc. ). In particular, the aggregate excess demand correspondence for net combined infonnation trades is a continuous function. Proof Uniqueness fails only if an agent can obtain the same expected utility from two or more net combined infonnation allocations. If this happens, appropriate slight perturbations of personal probability vectors destroy the equality unless the utility functions and wealth allocations were independent across states. Yet, when utilities and wealths don't depend on states in S, no infonnation to distinguish the states is desired, so that the demand for such infonnation structures must equal zero. To show the second claim, recall that if the correspondence is single valued for almost every agent, then its integral is also single valued. Finally, note that an upper hemicontinuous (by Proposition 2) correspondence which is single valued everywhere is, in fact, a continuous function. [] REFERENCES Allen, Beth (1986a). "The Demand for (Differentiated) Infonnation"; Review of Economic Studies. 53. (311-323). Allen, Beth (1986b). "General Equilibrium with Infonnation Sales"; Theory and Decision. 21. (1-33). Allen, Beth (1990). "Infonnation as an Economic Commodity"; American Economic Review. 80. (268-273).

Book The Oxford Handbook of Computational and Mathematical Psychology

Download or read book The Oxford Handbook of Computational and Mathematical Psychology written by Jerome R. Busemeyer and published by . This book was released on 2015 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Oxford Handbook offers a comprehensive and authoritative review of important developments in computational and mathematical psychology. With chapters written by leading scientists across a variety of subdisciplines, it examines the field's influence on related research areas such as cognitive psychology, developmental psychology, clinical psychology, and neuroscience. The Handbook emphasizes examples and applications of the latest research, and will appeal to readers possessing various levels of modeling experience. The Oxford Handbook of Computational and mathematical Psychology covers the key developments in elementary cognitive mechanisms (signal detection, information processing, reinforcement learning), basic cognitive skills (perceptual judgment, categorization, episodic memory), higher-level cognition (Bayesian cognition, decision making, semantic memory, shape perception), modeling tools (Bayesian estimation and other new model comparison methods), and emerging new directions in computation and mathematical psychology (neurocognitive modeling, applications to clinical psychology, quantum cognition). The Handbook would make an ideal graduate-level textbook for courses in computational and mathematical psychology. Readers ranging from advanced undergraduates to experienced faculty members and researchers in virtually any area of psychology--including cognitive science and related social and behavioral sciences such as consumer behavior and communication--will find the text useful.

Book Decision Making Under Uncertainty

Download or read book Decision Making Under Uncertainty written by Mykel J. Kochenderfer and published by MIT Press. This book was released on 2015-07-24 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to decision making under uncertainty from a computational perspective, covering both theory and applications ranging from speech recognition to airborne collision avoidance. Many important problems involve decision making under uncertainty—that is, choosing actions based on often imperfect observations, with unknown outcomes. Designers of automated decision support systems must take into account the various sources of uncertainty while balancing the multiple objectives of the system. This book provides an introduction to the challenges of decision making under uncertainty from a computational perspective. It presents both the theory behind decision making models and algorithms and a collection of example applications that range from speech recognition to aircraft collision avoidance. Focusing on two methods for designing decision agents, planning and reinforcement learning, the book covers probabilistic models, introducing Bayesian networks as a graphical model that captures probabilistic relationships between variables; utility theory as a framework for understanding optimal decision making under uncertainty; Markov decision processes as a method for modeling sequential problems; model uncertainty; state uncertainty; and cooperative decision making involving multiple interacting agents. A series of applications shows how the theoretical concepts can be applied to systems for attribute-based person search, speech applications, collision avoidance, and unmanned aircraft persistent surveillance. Decision Making Under Uncertainty unifies research from different communities using consistent notation, and is accessible to students and researchers across engineering disciplines who have some prior exposure to probability theory and calculus. It can be used as a text for advanced undergraduate and graduate students in fields including computer science, aerospace and electrical engineering, and management science. It will also be a valuable professional reference for researchers in a variety of disciplines.

Book Modelling Under Risk and Uncertainty

Download or read book Modelling Under Risk and Uncertainty written by Etienne de Rocquigny and published by John Wiley & Sons. This book was released on 2012-04-30 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modelling has permeated virtually all areas of industrial, environmental, economic, bio-medical or civil engineering: yet the use of models for decision-making raises a number of issues to which this book is dedicated: How uncertain is my model ? Is it truly valuable to support decision-making ? What kind of decision can be truly supported and how can I handle residual uncertainty ? How much refined should the mathematical description be, given the true data limitations ? Could the uncertainty be reduced through more data, increased modeling investment or computational budget ? Should it be reduced now or later ? How robust is the analysis or the computational methods involved ? Should / could those methods be more robust ? Does it make sense to handle uncertainty, risk, lack of knowledge, variability or errors altogether ? How reasonable is the choice of probabilistic modeling for rare events ? How rare are the events to be considered ? How far does it make sense to handle extreme events and elaborate confidence figures ? Can I take advantage of expert / phenomenological knowledge to tighten the probabilistic figures ? Are there connex domains that could provide models or inspiration for my problem ? Written by a leader at the crossroads of industry, academia and engineering, and based on decades of multi-disciplinary field experience, Modelling Under Risk and Uncertainty gives a self-consistent introduction to the methods involved by any type of modeling development acknowledging the inevitable uncertainty and associated risks. It goes beyond the “black-box” view that some analysts, modelers, risk experts or statisticians develop on the underlying phenomenology of the environmental or industrial processes, without valuing enough their physical properties and inner modelling potential nor challenging the practical plausibility of mathematical hypotheses; conversely it is also to attract environmental or engineering modellers to better handle model confidence issues through finer statistical and risk analysis material taking advantage of advanced scientific computing, to face new regulations departing from deterministic design or support robust decision-making. Modelling Under Risk and Uncertainty: Addresses a concern of growing interest for large industries, environmentalists or analysts: robust modeling for decision-making in complex systems. Gives new insights into the peculiar mathematical and computational challenges generated by recent industrial safety or environmental control analysis for rare events. Implements decision theory choices differentiating or aggregating the dimensions of risk/aleatory and epistemic uncertainty through a consistent multi-disciplinary set of statistical estimation, physical modelling, robust computation and risk analysis. Provides an original review of the advanced inverse probabilistic approaches for model identification, calibration or data assimilation, key to digest fast-growing multi-physical data acquisition. Illustrated with one favourite pedagogical example crossing natural risk, engineering and economics, developed throughout the book to facilitate the reading and understanding. Supports Master/PhD-level course as well as advanced tutorials for professional training Analysts and researchers in numerical modeling, applied statistics, scientific computing, reliability, advanced engineering, natural risk or environmental science will benefit from this book.

Book Mastering Risk Modelling

Download or read book Mastering Risk Modelling written by Alastair L. Day and published by Financial Times/Prentice Hall. This book was released on 2003 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Risk modeling is now a core skill for successful managers inside and outside finance. Alastair Day's "Mastering Risk Modelling" shows managers exactly how to build Excel-based models for identifying, quantifying and managing risk--models that provide clear, accurate decision-making guidance that can be used with confidence throughout the enterprise. An ideal follow-up to Day's bestselling "Mastering Financial Modelling," the book brings together risk modeling theory and practice more effectively than ever before. Day presents extensive tips and methods for developing Excel-based risk applications--including practical guidance on designing models and layering complexity on top of basic models. His series of Excel templates will jumpstart your own modeling, eliminate the need to start from scratch, and provide powerful insights for improving any model. All models are provided on an accompanying CD-ROM.

Book Managing Risk and Uncertainty

Download or read book Managing Risk and Uncertainty written by Richard Friberg and published by MIT Press. This book was released on 2015-11-13 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive framework for assessing strategies for managing risk and uncertainty, integrating theory and practice and synthesizing insights from many fields. This book offers a framework for making decisions under risk and uncertainty. Synthesizing research from economics, finance, decision theory, management, and other fields, the book provides a set of tools and a way of thinking that determines the relative merits of different strategies. It takes as its premise that we make better decisions if we use the whole toolkit of economics and related fields to inform our decision making. The text explores the distinction between risk and uncertainty and covers standard models of decision making under risk as well as more recent work on decision making under uncertainty, with a particular focus on strategic interaction. It also examines the implications of incomplete markets for managing under uncertainty. It presents four core strategies: a benchmark strategy (proceeding as if risk and uncertainty were low), a financial hedging strategy (valuable if there is much risk), an operational hedging strategy (valuable for conditions of much uncertainty), and a flexible strategy (valuable if there is much risk and/or uncertainty). The book then examines various aspects of these strategies in greater depth, building on empirical work in several different fields. Topics include price-setting, real options and Monte Carlo techniques, organizational structure, and behavioral biases. Many chapters include exercises and appendixes with additional material. The book can be used in graduate or advanced undergraduate courses in risk management, as a guide for researchers, or as a reference for management practitioners.

Book Principles of Risk Analysis

Download or read book Principles of Risk Analysis written by Charles Yoe and published by CRC Press. This book was released on 2016-04-19 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: In every decision context there are things we know and things we do not know. Risk analysis uses science and the best available evidence to assess what we know-and it is intentional in the way it addresses the importance of the things we don't know. Principles of Risk Analysis: Decision Making Under Uncertainty lays out the tasks of risk analysis i

Book Science and Judgment in Risk Assessment

Download or read book Science and Judgment in Risk Assessment written by National Research Council and published by National Academies Press. This book was released on 1994-01-01 with total page 668 pages. Available in PDF, EPUB and Kindle. Book excerpt: The public depends on competent risk assessment from the federal government and the scientific community to grapple with the threat of pollution. When risk reports turn out to be overblownâ€"or when risks are overlookedâ€"public skepticism abounds. This comprehensive and readable book explores how the U.S. Environmental Protection Agency (EPA) can improve its risk assessment practices, with a focus on implementation of the 1990 Clean Air Act Amendments. With a wealth of detailed information, pertinent examples, and revealing analysis, the volume explores the "default option" and other basic concepts. It offers two views of EPA operations: The first examines how EPA currently assesses exposure to hazardous air pollutants, evaluates the toxicity of a substance, and characterizes the risk to the public. The second, more holistic, view explores how EPA can improve in several critical areas of risk assessment by focusing on cross-cutting themes and incorporating more scientific judgment. This comprehensive volume will be important to the EPA and other agencies, risk managers, environmental advocates, scientists, faculty, students, and concerned individuals.

Book Risk  Opportunity  Uncertainty and Other Random Models

Download or read book Risk Opportunity Uncertainty and Other Random Models written by Alan R. Jones and published by Routledge. This book was released on 2018-09-13 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Risk, Opportunity, Uncertainty and Other Random Models (Volume V in the Working Guides to Estimating and Forecasting series) goes part way to debunking the myth that research and development cost are somewhat random, as under certain conditions they can be observed to follow a pattern of behaviour referred to as a Norden-Rayleigh Curve, which unfortunately has to be truncated to stop the myth from becoming a reality! However, there is a practical alternative in relation to a particular form of PERT-Beta Curve. However, the major emphasis of this volume is the use of Monte Carlo Simulation as a general technique for narrowing down potential outcomes of multiple interacting variables or cost drivers. Perhaps the most common of these in the evaluation of Risk, Opportunity and Uncertainty. The trouble is that many Monte Carlo Simulation tools are ‘black boxes’ and too few estimators and forecasters really appreciate what is happening inside the ‘black box’. This volume aims to resolve that and offers tips into things that might need to be considered to remove some of the uninformed random input that often creates a misinformed misconception of ‘it must be right!’ Monte Carlo Simulation can be used to model variable determine Critical Paths in a schedule, and is key to modelling Waiting Times and cues with random arisings. Supported by a wealth of figures and tables, this is a valuable resource for estimators, engineers, accountants, project risk specialists as well as students of cost engineering.

Book Handbook of the Economics of Risk and Uncertainty

Download or read book Handbook of the Economics of Risk and Uncertainty written by Mark Machina and published by Newnes. This book was released on 2013-11-14 with total page 897 pages. Available in PDF, EPUB and Kindle. Book excerpt: The need to understand the theories and applications of economic and finance risk has been clear to everyone since the financial crisis, and this collection of original essays proffers broad, high-level explanations of risk and uncertainty. The economics of risk and uncertainty is unlike most branches of economics in spanning from the individual decision-maker to the market (and indeed, social decisions), and ranging from purely theoretical analysis through individual experimentation, empirical analysis, and applied and policy decisions. It also has close and sometimes conflicting relationships with theoretical and applied statistics, and psychology. The aim of this volume is to provide an overview of diverse aspects of this field, ranging from classical and foundational work through current developments. - Presents coherent summaries of risk and uncertainty that inform major areas in economics and finance - Divides coverage between theoretical, empirical, and experimental findings - Makes the economics of risk and uncertainty accessible to scholars in fields outside economics

Book Uncertainty Analysis in Engineering and Sciences  Fuzzy Logic  Statistics  and Neural Network Approach

Download or read book Uncertainty Analysis in Engineering and Sciences Fuzzy Logic Statistics and Neural Network Approach written by Bilal Ayyub and published by Springer Science & Business Media. This book was released on 1997-10-31 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: Uncertainty has been of concern to engineers, managers and . scientists for many centuries. In management sciences there have existed definitions of uncertainty in a rather narrow sense since the beginning of this century. In engineering and uncertainty has for a long time been considered as in sciences, however, synonymous with random, stochastic, statistic, or probabilistic. Only since the early sixties views on uncertainty have ~ecome more heterogeneous and more tools to model uncertainty than statistics have been proposed by several scientists. The problem of modeling uncertainty adequately has become more important the more complex systems have become, the faster the scientific and engineering world develops, and the more important, but also more difficult, forecasting of future states of systems have become. The first question one should probably ask is whether uncertainty is a phenomenon, a feature of real world systems, a state of mind or a label for a situation in which a human being wants to make statements about phenomena, i. e. , reality, models, and theories, respectively. One cart also ask whether uncertainty is an objective fact or just a subjective impression which is closely related to individual persons. Whether uncertainty is an objective feature of physical real systems seems to be a philosophical question. This shall not be answered in this volume.

Book Effectual Entrepreneurship

Download or read book Effectual Entrepreneurship written by Stuart Read and published by Taylor & Francis. This book was released on 2016-09-19 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: What are you waiting for? Whether you’re dreaming about starting a business, learning about entrepreneurship or on the brink of creating a new opportunity right now, don’t wait. Open this updated bestseller. Inside you’ll find everything you need, including: a new and popular way to learn about and to practice entrepreneurship. new practical exercises, questions and activities for each step in your process. specific principles derived from the methods of expert entrepreneurs. over seventy updated case briefs of entrepreneurs across industries, locations and time. new applications to social entrepreneurship, technology and to large enterprises. plentiful connections to current and foundational research in the field (Research Roots) brand new chapter on "The Ask" - strategies for initiating the process of co-creating with partners data that will challenge conventional entrepreneurship wisdom a broader perspective on the science of entrepreneurship In this vibrant updated edition, you will find these ideas presented in the concise, modular, graphical form made popular in the first edition, perfect for those learning to be entrepreneurs or those already in the thick of things. If you want to learn about entrepreneurship in a way that emphasizes action, this new edition is vital reading. If you have already launched your entrepreneurial career and are looking for new perspectives, take the effectual entrepreneurship challenge! this book is for you. If you feel that you are no longer creating anything novel or valuable in your day job, and you’re wondering how to change things, this book is for you. Anyone using entrepreneurship to create the change they want to see in the world will find a wealth of thought-provoking material, expert advice and practical techniques in these pages and on the accompanying website: www.effectuation.org So, what are you waiting for?

Book Risk  Uncertainty and Profit

Download or read book Risk Uncertainty and Profit written by Frank H. Knight and published by Cosimo, Inc.. This book was released on 2006-11-01 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: A timeless classic of economic theory that remains fascinating and pertinent today, this is Frank Knight's famous explanation of why perfect competition cannot eliminate profits, the important differences between "risk" and "uncertainty," and the vital role of the entrepreneur in profitmaking. Based on Knight's PhD dissertation, this 1921 work, balancing theory with fact to come to stunning insights, is a distinct pleasure to read. FRANK H. KNIGHT (1885-1972) is considered by some the greatest American scholar of economics of the 20th century. An economics professor at the University of Chicago from 1927 until 1955, he was one of the founders of the Chicago school of economics, which influenced Milton Friedman and George Stigler.

Book Review of the Department of Homeland Security s Approach to Risk Analysis

Download or read book Review of the Department of Homeland Security s Approach to Risk Analysis written by National Research Council and published by National Academies Press. This book was released on 2010-09-10 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: The events of September 11, 2001 changed perceptions, rearranged national priorities, and produced significant new government entities, including the U.S. Department of Homeland Security (DHS) created in 2003. While the principal mission of DHS is to lead efforts to secure the nation against those forces that wish to do harm, the department also has responsibilities in regard to preparation for and response to other hazards and disasters, such as floods, earthquakes, and other "natural" disasters. Whether in the context of preparedness, response or recovery from terrorism, illegal entry to the country, or natural disasters, DHS is committed to processes and methods that feature risk assessment as a critical component for making better-informed decisions. Review of the Department of Homeland Security's Approach to Risk Analysis explores how DHS is building its capabilities in risk analysis to inform decision making. The department uses risk analysis to inform decisions ranging from high-level policy choices to fine-scale protocols that guide the minute-by-minute actions of DHS employees. Although DHS is responsible for mitigating a range of threats, natural disasters, and pandemics, its risk analysis efforts are weighted heavily toward terrorism. In addition to assessing the capability of DHS risk analysis methods to support decision-making, the book evaluates the quality of the current approach to estimating risk and discusses how to improve current risk analysis procedures. Review of the Department of Homeland Security's Approach to Risk Analysis recommends that DHS continue to build its integrated risk management framework. It also suggests that the department improve the way models are developed and used and follow time-tested scientific practices, among other recommendations.

Book Foundations of Risk Analysis

Download or read book Foundations of Risk Analysis written by Terje Aven and published by John Wiley & Sons. This book was released on 2004-01-09 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: Everyday we face decisions that carry an element of risk and uncertainty. The ability to analyse, communicate and control the level of risk entailed by these decisions remains one of the most pressing challenges to the analyst, scientist and manager. This book presents the foundational issues in risk analysis ? expressing risk, understanding what risk means, building risk models, addressing uncertainty, and applying probability models to real problems. The principal aim of the book is to give the reader the knowledge and basic thinking they require to approach risk and uncertainty to support decision making. Presents a statistical framework for dealing with risk and uncertainty. Includes detailed coverage of building and applying risk models and methods. Offers new perspectives on risk, risk assessment and the use of parametric probability models. Highlights a number of applications from business and industry. Adopts a conceptual approach based on elementary probability calculus and statistical theory. Foundations of Risk Analysis provides a framework for understanding, conducting and using risk analysis suitable for advanced undergraduates, graduates, analysts and researchers from statistics, engineering, finance, medicine and the physical sciences, as well as for managers facing decision making problems involving risk and uncertainty.

Book Decisions Under Uncertainty

Download or read book Decisions Under Uncertainty written by Ian Jordaan and published by Cambridge University Press. This book was released on 2005-04-07 with total page 696 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher Description

Book Probability and Bayesian Modeling

Download or read book Probability and Bayesian Modeling written by Jim Albert and published by CRC Press. This book was released on 2019-12-06 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability and Bayesian Modeling is an introduction to probability and Bayesian thinking for undergraduate students with a calculus background. The first part of the book provides a broad view of probability including foundations, conditional probability, discrete and continuous distributions, and joint distributions. Statistical inference is presented completely from a Bayesian perspective. The text introduces inference and prediction for a single proportion and a single mean from Normal sampling. After fundamentals of Markov Chain Monte Carlo algorithms are introduced, Bayesian inference is described for hierarchical and regression models including logistic regression. The book presents several case studies motivated by some historical Bayesian studies and the authors’ research. This text reflects modern Bayesian statistical practice. Simulation is introduced in all the probability chapters and extensively used in the Bayesian material to simulate from the posterior and predictive distributions. One chapter describes the basic tenets of Metropolis and Gibbs sampling algorithms; however several chapters introduce the fundamentals of Bayesian inference for conjugate priors to deepen understanding. Strategies for constructing prior distributions are described in situations when one has substantial prior information and for cases where one has weak prior knowledge. One chapter introduces hierarchical Bayesian modeling as a practical way of combining data from different groups. There is an extensive discussion of Bayesian regression models including the construction of informative priors, inference about functions of the parameters of interest, prediction, and model selection. The text uses JAGS (Just Another Gibbs Sampler) as a general-purpose computational method for simulating from posterior distributions for a variety of Bayesian models. An R package ProbBayes is available containing all of the book datasets and special functions for illustrating concepts from the book. A complete solutions manual is available for instructors who adopt the book in the Additional Resources section.