Download or read book Forecasting in the Presence of Structural Breaks and Model Uncertainty written by David E. Rapach and published by Emerald Group Publishing. This book was released on 2008-02-29 with total page 691 pages. Available in PDF, EPUB and Kindle. Book excerpt: Forecasting in the presence of structural breaks and model uncertainty are active areas of research with implications for practical problems in forecasting. This book addresses forecasting variables from both Macroeconomics and Finance, and considers various methods of dealing with model instability and model uncertainty when forming forecasts.
Download or read book Long Memory in Economics written by Gilles Teyssière and published by Springer Science & Business Media. This book was released on 2006-09-22 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Assembles three different strands of long memory analysis: statistical literature on the properties of, and tests for, LRD processes; mathematical literature on the stochastic processes involved; and models from economic theory providing plausible micro foundations for the occurrence of long memory in economics.
Download or read book Long Memory Processes written by Jan Beran and published by Springer Science & Business Media. This book was released on 2013-05-14 with total page 892 pages. Available in PDF, EPUB and Kindle. Book excerpt: Long-memory processes are known to play an important part in many areas of science and technology, including physics, geophysics, hydrology, telecommunications, economics, finance, climatology, and network engineering. In the last 20 years enormous progress has been made in understanding the probabilistic foundations and statistical principles of such processes. This book provides a timely and comprehensive review, including a thorough discussion of mathematical and probabilistic foundations and statistical methods, emphasizing their practical motivation and mathematical justification. Proofs of the main theorems are provided and data examples illustrate practical aspects. This book will be a valuable resource for researchers and graduate students in statistics, mathematics, econometrics and other quantitative areas, as well as for practitioners and applied researchers who need to analyze data in which long memory, power laws, self-similar scaling or fractal properties are relevant.
Download or read book Dependence in Probability and Statistics written by Paul Doukhan and published by Springer Science & Business Media. This book was released on 2010-07-23 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: This account of recent works on weakly dependent, long memory and multifractal processes introduces new dependence measures for studying complex stochastic systems and includes other topics such as the dependence structure of max-stable processes.
Download or read book Unit Roots and Structural Breaks written by Pierre Perron and published by MDPI. This book was released on 2018-04-13 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue "Unit Roots and Structural Breaks" that was published in Econometrics
Download or read book Handbook of Volatility Models and Their Applications written by Luc Bauwens and published by John Wiley & Sons. This book was released on 2012-04-17 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: A complete guide to the theory and practice of volatility models in financial engineering Volatility has become a hot topic in this era of instant communications, spawning a great deal of research in empirical finance and time series econometrics. Providing an overview of the most recent advances, Handbook of Volatility Models and Their Applications explores key concepts and topics essential for modeling the volatility of financial time series, both univariate and multivariate, parametric and non-parametric, high-frequency and low-frequency. Featuring contributions from international experts in the field, the book features numerous examples and applications from real-world projects and cutting-edge research, showing step by step how to use various methods accurately and efficiently when assessing volatility rates. Following a comprehensive introduction to the topic, readers are provided with three distinct sections that unify the statistical and practical aspects of volatility: Autoregressive Conditional Heteroskedasticity and Stochastic Volatility presents ARCH and stochastic volatility models, with a focus on recent research topics including mean, volatility, and skewness spillovers in equity markets Other Models and Methods presents alternative approaches, such as multiplicative error models, nonparametric and semi-parametric models, and copula-based models of (co)volatilities Realized Volatility explores issues of the measurement of volatility by realized variances and covariances, guiding readers on how to successfully model and forecast these measures Handbook of Volatility Models and Their Applications is an essential reference for academics and practitioners in finance, business, and econometrics who work with volatility models in their everyday work. The book also serves as a supplement for courses on risk management and volatility at the upper-undergraduate and graduate levels.
Download or read book The Methodology and Practice of Econometrics written by Jennifer Castle and published by OUP Oxford. This book was released on 2009-04-30 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: David F. Hendry is a seminal figure in modern econometrics. He has pioneered the LSE approach to econometrics, and his influence is wide ranging. This book is a collection of papers dedicated to him and his work. Many internationally renowned econometricians who have collaborated with Hendry or have been influenced by his research have contributed to this volume, which provides a reflection on the recent advances in econometrics and considers the future progress for the methodology of econometrics. Central themes of the book include dynamic modelling and the properties of time series data, model selection and model evaluation, forecasting, policy analysis, exogeneity and causality, and encompassing. The book strikes a balance between econometric theory and empirical work, and demonstrates the influence that Hendry's research has had on the direction of modern econometrics. Contributors include: Karim Abadir, Anindya Banerjee, Gunnar Bårdsen, Andreas Beyer, Mike Clements, James Davidson, Juan Dolado, Jurgen Doornik, Robert Engle, Neil Ericsson, Jesus Gonzalo, Clive Granger, David Hendry, Kevin Hoover, Søren Johansen, Katarina Juselius, Steven Kamin, Pauline Kennedy, Maozu Lu, Massimiliano Marcellino, Laura Mayoral, Grayham Mizon, Bent Nielsen, Ragnor Nymoen, Jim Stock, Pravin Trivedi, Paolo Paruolo, Mark Watson, Hal White, and David Zimmer.
Download or read book Handbook Of Financial Econometrics Mathematics Statistics And Machine Learning In 4 Volumes written by Cheng Few Lee and published by World Scientific. This book was released on 2020-07-30 with total page 5053 pages. Available in PDF, EPUB and Kindle. Book excerpt: This four-volume handbook covers important concepts and tools used in the fields of financial econometrics, mathematics, statistics, and machine learning. Econometric methods have been applied in asset pricing, corporate finance, international finance, options and futures, risk management, and in stress testing for financial institutions. This handbook discusses a variety of econometric methods, including single equation multiple regression, simultaneous equation regression, and panel data analysis, among others. It also covers statistical distributions, such as the binomial and log normal distributions, in light of their applications to portfolio theory and asset management in addition to their use in research regarding options and futures contracts.In both theory and methodology, we need to rely upon mathematics, which includes linear algebra, geometry, differential equations, Stochastic differential equation (Ito calculus), optimization, constrained optimization, and others. These forms of mathematics have been used to derive capital market line, security market line (capital asset pricing model), option pricing model, portfolio analysis, and others.In recent times, an increased importance has been given to computer technology in financial research. Different computer languages and programming techniques are important tools for empirical research in finance. Hence, simulation, machine learning, big data, and financial payments are explored in this handbook.Led by Distinguished Professor Cheng Few Lee from Rutgers University, this multi-volume work integrates theoretical, methodological, and practical issues based on his years of academic and industry experience.
Download or read book Forecasting Volatility in the Financial Markets written by Stephen Satchell and published by Elsevier. This book was released on 2011-02-24 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Forecasting Volatility in the Financial Markets, Third Edition assumes that the reader has a firm grounding in the key principles and methods of understanding volatility measurement and builds on that knowledge to detail cutting-edge modelling and forecasting techniques. It provides a survey of ways to measure risk and define the different models of volatility and return. Editors John Knight and Stephen Satchell have brought together an impressive array of contributors who present research from their area of specialization related to volatility forecasting. Readers with an understanding of volatility measures and risk management strategies will benefit from this collection of up-to-date chapters on the latest techniques in forecasting volatility. Chapters new to this third edition:* What good is a volatility model? Engle and Patton* Applications for portfolio variety Dan diBartolomeo* A comparison of the properties of realized variance for the FTSE 100 and FTSE 250 equity indices Rob Cornish* Volatility modeling and forecasting in finance Xiao and Aydemir* An investigation of the relative performance of GARCH models versus simple rules in forecasting volatility Thomas A. Silvey - Leading thinkers present newest research on volatility forecasting - International authors cover a broad array of subjects related to volatility forecasting - Assumes basic knowledge of volatility, financial mathematics, and modelling
Download or read book Palgrave Handbook of Econometrics written by Terence C. Mills and published by Springer. This book was released on 2009-06-25 with total page 1406 pages. Available in PDF, EPUB and Kindle. Book excerpt: Following theseminal Palgrave Handbook of Econometrics: Volume I , this second volume brings together the finestacademicsworking in econometrics today andexploresapplied econometrics, containing contributions onsubjects includinggrowth/development econometrics and applied econometrics and computing.
Download or read book Detecting Multiple Breaks in Long Memory written by Uwe Hassler and published by . This book was released on 2016 with total page 56 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiple structural change tests by Bei and Perron (1998) are applied to the regression by Demetrescu, Kuzin and Hassler (2008) in order to detect breaks in the order of fractional integration. With this instrument we tackle time-varying inflation persistence as an important issue for monetary policy. We determine not only the location and significance of breaks in persistence, but also the number of breaks. Only one significant break in U.S. inflation persistence (measured by the long-memory parameter) is found to have taken place in 1973, while a second break in 1980 is not significant.
Download or read book Time Series Models written by D.R. Cox and published by CRC Press. This book was released on 2020-11-26 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: The analysis prediction and interpolation of economic and other time series has a long history and many applications. Major new developments are taking place, driven partly by the need to analyze financial data. The five papers in this book describe those new developments from various viewpoints and are intended to be an introduction accessible to readers from a range of backgrounds. The book arises out of the second Seminaire European de Statistique (SEMSTAT) held in Oxford in December 1994. This brought together young statisticians from across Europe, and a series of introductory lectures were given on topics at the forefront of current research activity. The lectures form the basis for the five papers contained in the book. The papers by Shephard and Johansen deal respectively with time series models for volatility, i.e. variance heterogeneity, and with cointegration. Clements and Hendry analyze the nature of prediction errors. A complementary review paper by Laird gives a biometrical view of the analysis of short time series. Finally Astrup and Nielsen give a mathematical introduction to the study of option pricing. Whilst the book draws its primary motivation from financial series and from multivariate econometric modelling, the applications are potentially much broader.
Download or read book Complex Models and Computational Methods in Statistics written by Matteo Grigoletto and published by Springer Science & Business Media. This book was released on 2013-01-26 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of computational methods in statistics to face complex problems and highly dimensional data, as well as the widespread availability of computer technology, is no news. The range of applications, instead, is unprecedented. As often occurs, new and complex data types require new strategies, demanding for the development of novel statistical methods and suggesting stimulating mathematical problems. This book is addressed to researchers working at the forefront of the statistical analysis of complex systems and using computationally intensive statistical methods.
Download or read book Handbook on Social Structure of Accumulation Theory written by McDonough, Terrence and published by Edward Elgar Publishing. This book was released on 2021-12-07 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: This pioneering Handbook offers a state-of-the-art exploration of the social structure of accumulation theory, a leading theory of stages of capitalism, expertly summarising its development to date. It breaks new ground in several areas, including econometric evidence for the theory and developing institutional analyses of technology and the environment.
Download or read book Fractal Approaches for Modeling Financial Assets and Predicting Crises written by Nekrasova, Inna and published by IGI Global. This book was released on 2018-02-09 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: In an ever-changing economy, market specialists strive to find new ways to evaluate the risks and potential reward of economic ventures. They start by assessing the importance of human reaction during the economic planning process and put together systems to measure financial markets and their longevity. Fractal Approaches for Modeling Financial Assets and Predicting Crises is a critical scholarly resource that examines the fractal structure and long-term memory of the financial markets in order to predict prices of financial assets and financial crises. Featuring coverage on a broad range of topics, such as computational process models, chaos theory, and game theory, this book is geared towards academicians, researchers, and students seeking current research on pricing and predicting financial crises.
Download or read book Non Linear Time Series written by Kamil Feridun Turkman and published by Springer. This book was released on 2014-09-29 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a useful combination of probabilistic and statistical tools for analyzing nonlinear time series. Key features of the book include a study of the extremal behavior of nonlinear time series and a comprehensive list of nonlinear models that address different aspects of nonlinearity. Several inferential methods, including quasi likelihood methods, sequential Markov Chain Monte Carlo Methods and particle filters, are also included so as to provide an overall view of the available tools for parameter estimation for nonlinear models. A chapter on integer time series models based on several thinning operations, which brings together all recent advances made in this area, is also included. Readers should have attended a prior course on linear time series, and a good grasp of simulation-based inferential methods is recommended. This book offers a valuable resource for second-year graduate students and researchers in statistics and other scientific areas who need a basic understanding of nonlinear time series.
Download or read book Econometrics of Structural Change written by Walter Krämer and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: Econometric models are made up of assumptions which never exactly match reality. Among the most contested ones is the requirement that the coefficients of an econometric model remain stable over time. Recent years have therefore seen numerous attempts to test for it or to model possible structural change when it can no longer be ignored. This collection of papers from Empirical Economics mirrors part of this development. The point of departure of most studies in this volume is the standard linear regression model Yt = x;fJt + U (t = I, ... , 1), t where notation is obvious and where the index t emphasises the fact that structural change is mostly discussed and encountered in a time series context. It is much less of a problem for cross section data, although many tests apply there as well. The null hypothesis of most tests for structural change is that fJt = fJo for all t, i.e. that the same regression applies to all time periods in the sample and that the disturbances u are well behaved. The well known Chow test for instance assumes t that there is a single structural shift at a known point in time, i.e. that fJt = fJo (t