EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Modelling of Insulated gate Field effect Transistors

Download or read book Modelling of Insulated gate Field effect Transistors written by El-Mansy, Youssef Aly and published by 1974.. This book was released on 1974 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modelling of Insulated gate Field effect Transistors

Download or read book Modelling of Insulated gate Field effect Transistors written by Youssef Aly El-Mansy and published by . This book was released on 1974 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modelling of Insulated gate Field effect Transistors

Download or read book Modelling of Insulated gate Field effect Transistors written by Youssef Aly El-Mansy and published by . This book was released on 1974 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book An Accurate Model for the Short Channel Insulated Gate Field effect Transistor

Download or read book An Accurate Model for the Short Channel Insulated Gate Field effect Transistor written by Stanford University. Stanford Electronics Laboratories and published by . This book was released on 1971 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accurate short channel Insulated gate field-effect transistor (IGFET) model is described which includes the effect of the drain depletion region on device characteristics in both triode and saturation regions. Calculation of deviations from the classical triode and saturation equations caused by interaction between the drain depletion region and the surface inversion region in devices constructed on lightly doped (

Book Design  Simulation and Construction of Field Effect Transistors

Download or read book Design Simulation and Construction of Field Effect Transistors written by Dhanasekaran Vikraman and published by BoD – Books on Demand. This book was released on 2018-07-18 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, research on microelectronics has been specifically focused on the proposition of efficient alternative methodologies and materials to fabricate feasible integrated circuits. This book provides a general background of thin film transistors and their simulations and constructions. The contents of the book are broadly classified into two topics: design and simulation of FETs and construction of FETs. All the authors anticipate that the provided chapters will act as a single source of reference for the design, simulation and construction of FETs. This edited book will help microelectronics researchers with their endeavors and would be a great addition to the realm of semiconductor physics.

Book A Digital Computer Analysis and Synthesis of Insulated Gate Field Effect Transistor Complementary Circuits

Download or read book A Digital Computer Analysis and Synthesis of Insulated Gate Field Effect Transistor Complementary Circuits written by Larry J. Harrell and published by . This book was released on 1969 with total page 64 pages. Available in PDF, EPUB and Kindle. Book excerpt: A digital model of the insulated gate field effect transistor was proposed and used in the solution of two and three-element circuits. A number of circuits with desired characteristics were obtained by the method of variation of parameters in the model. (Author).

Book Charging current Models of the Insulated Gate Field effect Transistor

Download or read book Charging current Models of the Insulated Gate Field effect Transistor written by Jennifer Anne Robinson and published by . This book was released on 1977 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computer Aided Analysis of Insulated Gate Field Effect Transistors

Download or read book Computer Aided Analysis of Insulated Gate Field Effect Transistors written by Mark Brown Barron and published by . This book was released on 1969 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: The classical analysis of Insulated Gate Field-Effect Transistors (IGFET) is reviewed and the corresponding theory is compared with experimental characteristics. The limitations of this theory are indicated and the reasons for the limitations are explained in terms of the device physics. Two operating configurations which do not comply with the classical theory are subsequently analyzed with the aid of a digital computer; these are low-level current operation for gate voltages near threshold, and punch-through operation for short devices. The numerical data obtained from the low-level analysis is compared with experimental V-I characteristics, and it is shown that the device can be accurately modeled using the classical surface physics equations. Algebraic approximations, which offer certain advantages over numerical analysis, are shown to adequately describe transistor operation over certain current ranges. Derivations of the finite difference equations for numerical iterative analysis of the IGFET are described in detail. Certain stability problems are found to occur and methods for avoiding these are presented. Results of the analyses of short-channel devices are presented in the form of three-dimensional projections of the potential and carrier distributions. (Author).

Book BSIM4 and MOSFET Modeling for IC Simulation

Download or read book BSIM4 and MOSFET Modeling for IC Simulation written by Weidong Liu and published by World Scientific. This book was released on 2011 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the art of advanced MOSFET modeling for integrated circuit simulation and design. It provides the essential mathematical and physical analyses of all the electrical, mechanical and thermal effects in MOS transistors relevant to the operation of integrated circuits. Particular emphasis is placed on how the BSIM model evolved into the first ever industry standard SPICE MOSFET model for circuit simulation and CMOS technology development. The discussion covers the theory and methodology of how a MOSFET model, or semiconductor device models in general, can be implemented to be robust and efficient, turning device physics theory into a production-worthy SPICE simulation model. Special attention is paid to MOSFET characterization and model parameter extraction methodologies, making the book particularly useful for those interested or already engaged in work in the areas of semiconductor devices, compact modeling for SPICE simulation, and integrated circuit design.

Book Advanced Field Effect Transistors

Download or read book Advanced Field Effect Transistors written by Dharmendra Singh Yadav and published by CRC Press. This book was released on 2023-12-22 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Field-Effect Transistors: Theory and Applications offers a fresh perspective on the design and analysis of advanced field-effect transistor (FET) devices and their applications. The text emphasizes both fundamental and new paradigms that are essential for upcoming advancement in the field of transistors beyond complementary metal–oxide–semiconductors (CMOS). This book uses lucid, intuitive language to gradually increase the comprehension of readers about the key concepts of FETs, including their theory and applications. In order to improve readers’ learning opportunities, Advanced Field-Effect Transistors: Theory and Applications presents a wide range of crucial topics: Design and challenges in tunneling FETs Various modeling approaches for FETs Study of organic thin-film transistors Biosensing applications of FETs Implementation of memory and logic gates with FETs The advent of low-power semiconductor devices and related implications for upcoming technology nodes provide valuable insight into low-power devices and their applicability in wireless, biosensing, and circuit aspects. As a result, researchers are constantly looking for new semiconductor devices to meet consumer demand. This book gives more details about all aspects of the low-power technology, including ongoing and prospective circumstances with fundamentals of FET devices as well as sophisticated low-power applications.

Book Modeling and Characterization of the Insulated Gate Bipolar Transistor in the Near threshold Region

Download or read book Modeling and Characterization of the Insulated Gate Bipolar Transistor in the Near threshold Region written by Farah P. Vandrevala and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The Insulated Gate Bipolar Transistor (IGBT) is a power semiconductor device widely used in high-speed switching applications. Due to aging and internal heating, the device is prone to a failure mechanism known as latch-up in which, changes in the threshold voltage and the on-state voltage of the device may ultimately lead to loss of switching control. Since IGBTs are typically operated at high voltages and currents, the datasheets do not provide information on the static characteristics of the device for voltages close to the threshold, which is a useful region for understanding the underlying device physics. In this thesis a simplified IGBT model is presented that attempts to provide a magnified view of the static characteristics close to the threshold voltage. The model is developed based on the device structure and is optimized to fit the measured characteristics in the near-threshold voltage range.

Book Design  Simulation and Modeling of Insulated Gate Bipolar Transistor

Download or read book Design Simulation and Modeling of Insulated Gate Bipolar Transistor written by Kaustubh Gupta and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The market for Insulated Gate Bipolar Transistor (IGBT) is growing and there is a need for techniques to improve the design, modeling and simulation of IGBT. In this thesis, we first developed a new method to optimize the layout and dimensions of IGBT circuits based on device simulation and combinatorial optimization. Our method leads to the optimal IGBT layout consisting of hexagons, which is 6% more efficient in terms of performance (current per unit area) over that of squares, and up to 80% more efficient than rectangles. We also explored several techniques to reduce the time used for device simulation. In particular, we developed an accurate Verilog-A description based on the Hefner model. For transient simulation, the time used by SPICE on the Verilog-A model is only 1/10000 of that used by device simulation on the device structure. The SPICE results, though contain some inaccuracies in the details, match device simulation in the general trend. Due to the effectiveness and efficiency of our methods, we propose their application in designing better power electronic circuits and shorter turn-around time. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/151277

Book Compound Semiconductor Device Modelling

Download or read book Compound Semiconductor Device Modelling written by Christopher M. Snowden and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: Compound semiconductor devices form the foundation of solid-state microwave and optoelectronic technologies used in many modern communication systems. In common with their low frequency counterparts, these devices are often represented using equivalent circuit models, but it is often necessary to resort to physical models in order to gain insight into the detailed operation of compound semiconductor devices. Many of the earliest physical models were indeed developed to understand the 'unusual' phenomena which occur at high frequencies. Such was the case with the Gunn and IMPATI diodes, which led to an increased interest in using numerical simulation methods. Contemporary devices often have feature sizes so small that they no longer operate within the familiar traditional framework, and hot electron or even quantum mechanical models are required. The need for accurate and efficient models suitable for computer aided design has increased with the demand for a wider range of integrated devices for operation at microwave, millimetre and optical frequencies. The apparent complexity of equivalent circuit and physics-based models distinguishes high frequency devices from their low frequency counterparts . . Over the past twenty years a wide range of modelling techniques have emerged suitable for describing the operation of compound semiconductor devices. This book brings together for the first time the most popular techniques in everyday use by engineers and scientists. The book specifically addresses the requirements and techniques suitable for modelling GaAs, InP. ternary and quaternary semiconductor devices found in modern technology.

Book Compact Models for Integrated Circuit Design

Download or read book Compact Models for Integrated Circuit Design written by Samar K. Saha and published by CRC Press. This book was released on 2018-09-03 with total page 548 pages. Available in PDF, EPUB and Kindle. Book excerpt: Compact Models for Integrated Circuit Design: Conventional Transistors and Beyond provides a modern treatise on compact models for circuit computer-aided design (CAD). Written by an author with more than 25 years of industry experience in semiconductor processes, devices, and circuit CAD, and more than 10 years of academic experience in teaching compact modeling courses, this first-of-its-kind book on compact SPICE models for very-large-scale-integrated (VLSI) chip design offers a balanced presentation of compact modeling crucial for addressing current modeling challenges and understanding new models for emerging devices. Starting from basic semiconductor physics and covering state-of-the-art device regimes from conventional micron to nanometer, this text: Presents industry standard models for bipolar-junction transistors (BJTs), metal-oxide-semiconductor (MOS) field-effect-transistors (FETs), FinFETs, and tunnel field-effect transistors (TFETs), along with statistical MOS models Discusses the major issue of process variability, which severely impacts device and circuit performance in advanced technologies and requires statistical compact models Promotes further research of the evolution and development of compact models for VLSI circuit design and analysis Supplies fundamental and practical knowledge necessary for efficient integrated circuit (IC) design using nanoscale devices Includes exercise problems at the end of each chapter and extensive references at the end of the book Compact Models for Integrated Circuit Design: Conventional Transistors and Beyond is intended for senior undergraduate and graduate courses in electrical and electronics engineering as well as for researchers and practitioners working in the area of electron devices. However, even those unfamiliar with semiconductor physics gain a solid grasp of compact modeling concepts from this book.