Download or read book Modelling of Flow in Vertical Porous Structures Solving the Reynolds Averaged Navier Stokes Equations RANS using the Volume of Fluid Method VOF written by Stefan Leschka and published by diplom.de. This book was released on 2002-05-30 with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inhaltsangabe:Abstract: In this thesis the simulation of the flow in alpha vertical permeable structure with alpha free surface is described. The underlying physical data had been achieved from experiments in a wave flume at the University of Cantabria. For the calibration of the numerical model COBRAS, a VOF type programme developed at Cornell University, the numerical results are compared with the laboratory data. The data analysed comes from 8 free surface sensors, placed inside and outside of the porous structure, and 4 pressure sensors, placed on the impermeable back wall inside the porous structure. An error analysis, using the least square technique, lead to a stepwise improvement of the numerical and the porous media parameters. In this process various grids had been tested, concerning sponge layer length, source function position and cell size. Later the porous media parameter for laminar and turbulent flow had been adjusted. For various wave conditions and porous structure characteristics, the optimal values for these parameters turned out to lay between 0 and 200 for alpha and between 0.45 and 0.8 for beta. The following error analysis yielded to alpha=100 and beta=0.5 usable for all tested wave and porous media characteristics. Inhaltsverzeichnis:Table of Contents: 1.Introduction1 1.1General Introduction1 1.2Aims of study3 1.3Contents3 2.Numerical Modelling5 2.1Introduction5 2.2Overview of Numerical Models for Wave prediction6 2.3Numerical Models for Simulation of Flow in porous media7 2.3.1Overview of mathematical solutions7 2.3.2Available numerical models for porous media flow8 2.4The COBRAS Model9 2.4.1Overview9 2.4.2Governing Equations for the Mean Flow9 2.4.2.1Flow Motion Formulation9 2.4.2.1.1Navier-Stokes Equations and Boundary Conditions9 2.4.2.1.2Reynolds Equations and Boundary Conditions12 2.4.2.2Turbulence Transport Model14 2.4.2.2.1Transport Equation for Turbulent Kinetic Energy, k14 2.4.2.2.2The Transport Equation for Turbulent Dissipation Rate, F15 2.4.2.2.3Assumptions and Determinations of Coefficients in the k-s Model 16 2.4.2.2.4Boundary Conditions for k and s19 2.4.2.3Summary of Governing Equations19 2.4.3Modelling of Flow in Porous Media20 2.4.4The Volume of Fluid Method25 2.4.5The Source Function27 2.4.6The Sponge Layer28 2.4.7Numerical Algorithm30 2.5Closing comment31 3.Vertical Permeable Structures32 3.1Introduction32 3.2Motivation of the Experiments34 3.3Overview of the [...]
Download or read book Nonlinear Wave Dynamics written by Patrick Lynett and published by World Scientific. This book was released on 2009 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: In September 2006, research leaders in the field of coastal engineering, fluid mechanics, and wave theory met at Cornell University to celebrate the 60th birthday of Prof. Philip L-F Liu. This volume is a compilation of the research papers presented at the symposium, and includes both review and new research papers. Topics such as nonlinear wave theory, tsunamis, wave-structure interaction, turbulence, and modeling of complex sediment transport are discussed in this volume. All of the contributing authors are research collaborators of Prof. Liu, and include leaders in coastal engineering such as Maarten Dingemans, Hwung-Hweng Hwung, Nobu Kobayashi, Inigo Losada, Hocine Oumeraci, Costas Synolakis, and Harry Yeh.
Download or read book Coastal Structures 2007 In 2 Volumes Proceedings Of The 5th Coastal Structures International Conference Cst07 written by Alberto Lamberti and published by World Scientific. This book was released on 2009-06-09 with total page 2084 pages. Available in PDF, EPUB and Kindle. Book excerpt: Coastal Structures are undergoing renewal and innovation to better serve the needs of our society - from environmental co-existence and habitat enhancement to risk management. The CSt07 conference is the fifth in a series that highlight significant progress in the innovation, design and construction of coastal structures. Proceedings of these CSt conferences have yielded milestone works, frequently cited references in the field.This two-volume proceedings contains the final revised version of 178 papers that have been reviewed, selected and discussed at the CSt07 conference. The volume brings to readers a comprehensive range of contributions, covering all aspects of research, design, construction, and maintenance of coastal structures including new up-to-date interesting topics, such as tsunamis and storm surge defences, climate change, piled coastal structures as well as ecological issues, a new addition to the traditional program.
Download or read book Transfer Phenomena in Fluid and Heat Flows X written by Luiz Alberto Oliveira Rocha and published by Trans Tech Publications Ltd. This book was released on 2019-08-16 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: Special topic volume with invited peer reviewed papers only
Download or read book Renewable Energies Offshore written by C. Guedes Soares and published by CRC Press. This book was released on 2015-09-07 with total page 1029 pages. Available in PDF, EPUB and Kindle. Book excerpt: Renewable Energies Offshore includes the papers presented in the 1st International Conference on Renewable Energies Offshore (RENEW2014), held in Lisbon, 24-26 November 2014. The conference is a consequence of the importance of the offshore renewable energies worldwide and an opportunity to contribute to the exchange of information on the dev
Download or read book The Method of Volume Averaging written by S. Whitaker and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiphase systems dominate nearly every area of science and technology, and the method of volume averaging provides a rigorous foundation for the analysis of these systems. The development is based on classical continuum physics, and it provides both the spatially smoothed equations and a method of predicting the effective transport coefficients that appear in those equations. The text is based on a ten-week graduate course that has been taught for more than 20 years at the University of California at Davis and at other universities around the world. Problems dealing with both the theoretical foundations and the applications are included with each chapter, and detailed solutions for all problems are available from the author. The course has attracted participants from chemical engineering, mechanical engineering, civil engineering, hydrologic science, mathematics, chemistry and physics.
Download or read book The Finite Volume Method in Computational Fluid Dynamics written by F. Moukalled and published by Springer. This book was released on 2015-08-13 with total page 799 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook explores both the theoretical foundation of the Finite Volume Method (FVM) and its applications in Computational Fluid Dynamics (CFD). Readers will discover a thorough explanation of the FVM numerics and algorithms used for the simulation of incompressible and compressible fluid flows, along with a detailed examination of the components needed for the development of a collocated unstructured pressure-based CFD solver. Two particular CFD codes are explored. The first is uFVM, a three-dimensional unstructured pressure-based finite volume academic CFD code, implemented within Matlab. The second is OpenFOAM®, an open source framework used in the development of a range of CFD programs for the simulation of industrial scale flow problems. With over 220 figures, numerous examples and more than one hundred exercise on FVM numerics, programming, and applications, this textbook is suitable for use in an introductory course on the FVM, in an advanced course on numerics, and as a reference for CFD programmers and researchers.
Download or read book Turbulence written by Peter Davidson and published by Oxford University Press, USA. This book was released on 2015 with total page 647 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an advanced textbook on the subject of turbulence, and is suitable for engineers, physical scientists and applied mathematicians. The aim of the book is to bridge the gap between the elementary accounts of turbulence found in undergraduate texts, and the more rigorous monographs on the subject. Throughout, the book combines the maximum of physical insight with the minimum of mathematical detail. Chapters 1 to 5 may be appropriate as background material for an advanced undergraduate or introductory postgraduate course on turbulence, while chapters 6 to 10 may be suitable as background material for an advanced postgraduate course on turbulence, or act as a reference source for professional researchers. This second edition covers a decade of advancement in the field, streamlining the original content while updating the sections where the subject has moved on. The expanded content includes large-scale dynamics, stratified & rotating turbulence, the increased power of direct numerical simulation, two-dimensional turbulence, Magnetohydrodynamics, and turbulence in the core of the Earth
Download or read book The Rock Manual written by Construction Industry Research and Information Association and published by . This book was released on 2007 with total page 1312 pages. Available in PDF, EPUB and Kindle. Book excerpt: This publication is a summary of good practice on the use of rock in engineering works for rivers, coasts and seas. It has incorporated all the significant advances in knowledge that have occured over the past 10-15 years.
Download or read book Modelling Fluid Flow written by János Vad and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modelling Fluid Flow presents invited lectures, workshop summaries and a selection of papers from a recent international conference CMFF '03 on fluid technology. The lectures follow the current evolution and the newest challenges of the computational methods and measuring techniques related to fluid flow. The workshop summaries reflect the recent trends, open questions and unsolved problems in the mutually inspiring fields of experimental and computational fluid mechanics. The papers cover a wide range of fluids engineering, including reactive flow, chemical and process engineering, environmental fluid dynamics, turbulence modelling, numerical methods, and fluid machinery.
Download or read book Computational Methods for Multiphase Flow written by Andrea Prosperetti and published by Cambridge University Press. This book was released on 2009-06-25 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thanks to high-speed computers and advanced algorithms, the important field of modelling multiphase flows is an area of rapid growth. This one-stop account – now in paperback, with corrections from the first printing – is the ideal way to get to grips with this topic, which has significant applications in industry and nature. Each chapter is written by an acknowledged expert and includes extensive references to current research. All of the chapters are essentially independent and so the book can be used for a range of advanced courses and the self-study of specific topics. No other book covers so many topics related to multiphase flow, and it will therefore be warmly welcomed by researchers and graduate students of the subject across engineering, physics, and applied mathematics.
Download or read book Large Eddy Simulation in Hydraulics written by Wolfgang Rodi and published by CRC Press. This book was released on 2013-06-27 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the Large-Eddy-Simulation (LES) method, geared primarily toward hydraulic and environmental engineers, the book covers special features of flows in water bodies and summarizes the experience gained with LES for calculating such flows. It can also be a valuable entry to the subject of LES for researchers and students in all fields of fluids engineering, and the applications part will be useful to researchers interested in the physics of flows governed by the dynamics of coherent structures.
Download or read book Bubbly Flows written by Martin Sommerfeld and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book summarises the outcom of a priority research programme: 'Analysis, Modelling and Computation of Multiphase Flows'. The results of 24 individual research projects are presented. The main objective of the research programme was to provide a better understanding of the physical basis for multiphase gas-liquid flows as they are found in numerous chemical and biochemical reactors. The research comprises steady and unsteady multiphase flows in three frequently found reactor configurations, namely bubble columns without interiors, airlift loop reactors, and aerated stirred vessels. For this purpose new and improved measurement techniques were developed. From the resulting knowledge and data, new and refined models for describing the underlying physical processes were developed, which were used for the establishment and improvement of analytic as well as numerical methods for predicting multiphase reactors. Thereby, the development, lay-out and scale-up of such processes should be possible on a more reliable basis.
Download or read book Flowing Matter written by Federico Toschi and published by Springer Nature. This book was released on 2019-09-25 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book, published in the Soft and Biological Matter series, presents an introduction to selected research topics in the broad field of flowing matter, including the dynamics of fluids with a complex internal structure -from nematic fluids to soft glasses- as well as active matter and turbulent phenomena. Flowing matter is a subject at the crossroads between physics, mathematics, chemistry, engineering, biology and earth sciences, and relies on a multidisciplinary approach to describe the emergence of the macroscopic behaviours in a system from the coordinated dynamics of its microscopic constituents. Depending on the microscopic interactions, an assembly of molecules or of mesoscopic particles can flow like a simple Newtonian fluid, deform elastically like a solid or behave in a complex manner. When the internal constituents are active, as for biological entities, one generally observes complex large-scale collective motions. Phenomenology is further complicated by the invariable tendency of fluids to display chaos at the large scales or when stirred strongly enough. This volume presents several research topics that address these phenomena encompassing the traditional micro-, meso-, and macro-scales descriptions, and contributes to our understanding of the fundamentals of flowing matter. This book is the legacy of the COST Action MP1305 “Flowing Matter”.
Download or read book Multiphase Flow Handbook Second Edition written by Efstathios Michaelides and published by CRC Press. This book was released on 2016-10-26 with total page 1559 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Multiphase Flow Handbook, Second Edition is a thoroughly updated and reorganized revision of the late Clayton Crowe’s work, and provides a detailed look at the basic concepts and the wide range of applications in this important area of thermal/fluids engineering. Revised by the new editors, Efstathios E. (Stathis) Michaelides and John D. Schwarzkopf, the new Second Edition begins with two chapters covering fundamental concepts and methods that pertain to all the types and applications of multiphase flow. The remaining chapters cover the applications and engineering systems that are relevant to all the types of multiphase flow and heat transfer. The twenty-one chapters and several sections of the book include the basic science as well as the contemporary engineering and technological applications of multiphase flow in a comprehensive way that is easy to follow and be understood. The editors created a common set of nomenclature that is used throughout the book, allowing readers to easily compare fundamental theory with currently developing concepts and applications. With contributed chapters from sixty-two leading experts around the world, the Multiphase Flow Handbook, Second Edition is an essential reference for all researchers, academics and engineers working with complex thermal and fluid systems.
Download or read book Buoyancy Driven Flows written by Eric P. Chassignet and published by Cambridge University Press. This book was released on 2012-03-05 with total page 445 pages. Available in PDF, EPUB and Kindle. Book excerpt: Buoyancy is one of the main forces driving flows on our planet, especially in the oceans and atmosphere. These flows range from buoyant coastal currents to dense overflows in the ocean, and from avalanches to volcanic pyroclastic flows on the Earth's surface. This book brings together contributions by leading world scientists to summarize our present theoretical, observational, experimental and modeling understanding of buoyancy-driven flows. Buoyancy-driven currents play a key role in the global ocean circulation and in climate variability through their impact on deep-water formation. Buoyancy-driven currents are also primarily responsible for the redistribution of fresh water throughout the world's oceans. This book is an invaluable resource for advanced students and researchers in oceanography, geophysical fluid dynamics, atmospheric science and the wider Earth sciences who need a state-of-the-art reference on buoyancy-driven flows.
Download or read book Mechanics of Wave Forces on Offshore Structures written by Turgut Sarpkaya and published by . This book was released on 1981 with total page 682 pages. Available in PDF, EPUB and Kindle. Book excerpt: