EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Modeling Thermally Driven Energetic Response of High Explosives in ALE3D

Download or read book Modeling Thermally Driven Energetic Response of High Explosives in ALE3D written by and published by . This book was released on 1998 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors have improved their ability to model the response of energetic materials to thermal stimuli and the processes involved in the energetic response. Traditionally, the analyses of energetic materials have involved coupled thermal transport/chemical reaction codes. This provides only a reasonable estimate of the time and location of ensuing rapid reaction. To predict the violence of the reaction, the mechanical motion must be included in the wide range of time scales associated with the thermal hazard. The ALE3D code has been modified to assess the hazards associated with heating energetic materials in weapons by coupling to thermal transport model and chemistry models. They have developed an implicit time step option to efficiently and accurately compute the hours of heating to reaction of the energetic material. Since, on these longer time scales materials can be expected to have significant motion, it is even more important to provide high-order advection for all components, including the chemical species. They show two examples of coupled thermal/mechanical/chemical models of energetic materials in thermal environments.

Book Modeling Thermally Driven Energetic Response of High Explosives

Download or read book Modeling Thermally Driven Energetic Response of High Explosives written by and published by . This book was released on 1998 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: We have improved our ability to model the response of energetic materials to thermal stimuli and the processes involved in the energetic response. Traditionally, the analyses of energetic materials have involved coupled thermal transport/chemical reaction codes. This provides only a reasonable estimate of the time and location of ensuing rapid reaction. To predict the violence of the reaction, the mechanical motion must be included in the wide range of time scales associated with the thermal hazard. The ALE3D code has been modified to assess the hazards associated with heating energetic materials in weapons by coupling to thermal transport model and chemistry models. We have developed an implicit time step option to efficiently and accurately compute the hours of heating to reaction of the energetic material. Since, on these longer time scales materials can be expected to have significant motion, it is even more important to provide high-order advection for all components, including the chemical species. We show two examples of coupled thermal/mechanical/chemical models of energetic materials in thermal environments.

Book Simulating the Thermal Response of High Explosives on Time Scales of Days to Microseconds

Download or read book Simulating the Thermal Response of High Explosives on Time Scales of Days to Microseconds written by M. A. McClelland and published by . This book was released on 2003 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: We present an overview of computational techniques for simulating the thermal cookoff of high explosives using a multi-physics hydrodynamics code, ALE3D. Recent improvements to the code have aided our computational capability in modeling the response of energetic materials systems exposed to extreme thermal environments, such as fires. We consider an idealized model process for a confined explosive involving the transition from slow heating to rapid deflagration in which the time scale changes from days to hundreds of microseconds. The heating stage involves thermal expansion and decomposition according to an Arrhenius kinetics model while a pressure-dependent burn model is employed during the explosive phase. We describe and demonstrate the numerical strategies employed to make the transition from slow to fast dynamics.

Book Modeling the Structural Response from a Propagating High Explosive Using Smooth Particle Hydrodynamics

Download or read book Modeling the Structural Response from a Propagating High Explosive Using Smooth Particle Hydrodynamics written by and published by . This book was released on 2012 with total page 22 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report primarily concerns the use of two massively parallel finite element codes originally written and maintained at Lawrence Livermore National Laboratory. ALE3D is an explicit hydrodynamics code commonly employed to simulate wave propagation from high energy scenarios and the resulting interaction with nearby structures. This coupled response ensures that a structure is accurately applied with a blast loading varying both in space and time. Figure 1 illustrates the radial outward propagation of a pressure wave due to a center detonated spherical explosive originating from the lower left. The radial symmetry seen in this scenario is lost when instead a cylindrocal charge is detonated. Figure 2 indicates that a stronger, faster traveling pressure wave occurs in the direction of the normal axis to the cylinder. The ALE3D name is derived because of the use of arbitrary-Lagrange-Eulerian elements in which the mesh is allowed to advect; a process through which the mesh is modified to alleviate tanlging and general mesh distortion often cuased by high energy scenarios. The counterpart to an advecting element is a Lagrange element, whose mesh moves with the material. Ideally all structural components are kept Lagrange as long as possible to preserve accuracy of material variables and minimize advection related errors. Advection leads to mixed zoning, so using structural Lagrange elements also improves the visualization when post processing the results. A simplified representation of the advection process is shown in Figure 3. First the mesh is distorted due to material motion during the Lagrange step. The mesh is then shifted to an idealized and less distorted state to prevent irregular zones caused by the Lagrange motion. Lastly, the state variables are remapped to the elements of the newly constructed mesh. Note that Figure 3 represents a purely Eulerian mesh relaxation because the mesh is relocated back to the pre-Lagrange position. This is the case when the material flows through a still mesh. This is not typically done in an ALE3D analysis, especially if Lagrange elements exist. Deforming Lagrange elements would certainly tangle with a Eulerian mesh eventually. The best method in this case is to have an advecting mesh positioned as some relaxed version of the pre and post Lagrange step; this gives the best opportunity of modeling a high energy event with a combination of Lagrange and ALE elements. Dyne3D is another explicit dynamic analysis code, ParaDyn being the parallel version. ParaDyn is used for predicting the transient response of three dimensional structures using Lagrangian solid mechanics. Large deformation and mesh tangling is often resolved through the use of an element deletion scheme. This is useful to accommodate component failure, but if it is done purely as a means to preserve a useful mesh it can lead to problems because it does not maintain continuity of the material bulk response. Whatever medium exists between structural components is typically not modeled in ParaDyn. Instead, a structure either has a known loading profile applied or given initial conditions. The many included contact algorithms can calculate the loading response of materials if and when they collide. A recent implementation of an SPH module in which failed or deleted material nodes are converted to independent particles is currently being utilized for a variety of spall related problems and high velocity impact scenarios. Figure 4 shows an example of a projectile, given an initial velocity, and how it fails the first plate which generates SPH particles which then interact with and damage the second plate.

Book Numerical Modeling of Explosives and Propellants

Download or read book Numerical Modeling of Explosives and Propellants written by Charles L. Mader and published by CRC Press. This book was released on 2007-10-18 with total page 539 pages. Available in PDF, EPUB and Kindle. Book excerpt: Major advances, both in modeling methods and in the computing power required to make those methods viable, have led to major breakthroughs in our ability to model the performance and vulnerability of explosives and propellants. In addition, the development of proton radiography during the last decade has provided researchers with a major new experimental tool for studying explosive and shock wave physics. Problems that were once considered intractable – such as the generation of water cavities, jets, and stems by explosives and projectiles – have now been solved. Numerical Modeling of Explosives and Propellants, Third Edition provides a complete overview of this rapidly emerging field, covering basic reactive fluid dynamics as well as the latest and most complex methods and findings. It also describes and evaluates Russian contributions to the experimental explosive physics database, which only recently have become available. This book comes with downloadable resources that contain— · FORTRAN and executable computer codes that operate under Microsoft® Windows Vista operating system and the OS X operating system for Apple computers · Windows Vista and MAC compatible movies and PowerPoint presentations for each chapter · Explosive and shock wave databases generated at the Los Alamos National Laboratory and the Russian Federal Nuclear Centers Charles Mader’s three-pronged approach – through text, computer programs, and animations – imparts a thorough understanding of new computational methods and experimental measuring techniques, while also providing the tools to put these methods to effective use.

Book Energetic Materials

    Book Details:
  • Author :
  • Publisher : Elsevier
  • Release : 2003-11-21
  • ISBN : 0080530915
  • Pages : 475 pages

Download or read book Energetic Materials written by and published by Elsevier. This book was released on 2003-11-21 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides an overview of current research and recent advances in the area of energetic materials, focusing on explosives and propellants. The contents and format reflect the fact that theory, experiment and computation are closely linked in this field. The challenge of developing energetic materials that are less sensitive to accidental stimuli continues to be of critical importance. This volume opens with discussions of some determinants of sensitivity and its correlations with various molecular and crystal properties. The next several chapters deal in considerable detail with different aspects and mechanisms of the initiation of detonation, and its quantitative description. The second half of this volume focuses upon combustion. Extensive studies model ignition and combustion, with applications to different propellants. The final chapter is an exhaustive computational treatment of the mechanism and kinetics of combustion initiation reactions of ammonium perchlorate. Overall, this volume illustrates the progress that has been made in the field of energetic materials and some of the areas of current activity. It also indicates the challenges involved in characterizing and understanding the properties and behaviour of these compounds. The work is a unique state-of-the-art treatment of the subject, written by pre-eminent researchers in the field. - Overall emphasis is on theory and computation, presented in the context of relevant experimental work - Presents a unique state-of-the-art treatment of the subject - Contributors are preeminent researchers in the field

Book Simulating Thermal Explosion of RDX based Explosives

Download or read book Simulating Thermal Explosion of RDX based Explosives written by and published by . This book was released on 2004 with total page 40 pages. Available in PDF, EPUB and Kindle. Book excerpt: We compare two-dimensional model results with measurements for the thermal, chemical and mechanical behavior in a thermal explosion experiment. Confined high explosives are heated at a rate of 1 C per hour until an explosion is observed. The heating, ignition, and deflagration phases are modeled using an Arbitrarily Lagrangian-Eulerian code (ALE3D) that can handle a wide range of time scales that vary from a structural to a dynamic hydro time scale. During the pre-ignition phase, quasi-static mechanics and diffusive thermal transfer from a heat source to the HE are coupled with the finite chemical reactions that include both endothermic and exothermic processes. Once the HE ignites, a hydro dynamic calculation is performed as a burn front propagates through the HE. Two RDX-based explosives, C-4 and PBXN-109, are considered, whose chemical-thermal-mechanical models are constructed based on measurements of thermal and mechanical properties along with small scale thermal explosion measurements. The simulated dynamic response of HE confinement during the explosive phase is compared to measurements in large scale thermal explosion tests. The explosion temperatures for both HE's are predicted to within 5 C. Calculated and measured wall strains provide an indication of vessel pressurization during the heating phase and violence during the explosive phase. During the heating phase, simulated wall strains provide only an approximate representation of measured values indicating a better numerical treatment is needed to provide accurate results. The results also show that more numerical accuracy is needed for vessels with lesser confinement strength. For PBXN-109, the measured wall strains during the explosion are well represented by the ALE3D calculations.

Book Energetic Compounds

Download or read book Energetic Compounds written by Mohammad Hossein Keshavarz and published by Walter de Gruyter GmbH & Co KG. This book was released on 2020-05-05 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses methods for the assessment of energetic compounds through heat of detonation, detonation pressure, velocity and temperature, Gurney energy and power. The authors focus on the detonation pressure and detonation velocity of non-ideal aluminized energetic compounds. This 2nd Edition includes an updated and improved presentation of simple, reliable methods for the design, synthesis and development of novel energetic compounds.

Book Toward Improved Fidelity of Thermal Explosion Simulations

Download or read book Toward Improved Fidelity of Thermal Explosion Simulations written by and published by . This book was released on 2009 with total page 6 pages. Available in PDF, EPUB and Kindle. Book excerpt: We will present results of an effort to improve the thermal/chemical/mechanical modeling of HMX based explosive like LX04 and LX10 for thermal cook-off. The original HMX model and analysis scheme were developed by Yoh et.al. for use in the ALE3D modeling framework. The current results were built to remedy the deficiencies of that original model. We concentrated our efforts in four areas. The first area was addition of porosity to the chemical material model framework in ALE3D that is used to model the HMX explosive formulation. This is needed to handle the roughly 2% porosity in solid explosives. The second area was the improvement of the HMX reaction network, which included the inclusion of a reactive phase change model base on work by Henson et.al. The third area required adding early decomposition gas species to the CHEETAH material database to develop more accurate equations of state for gaseous intermediates and products. Finally, it was necessary to improve the implicit mechanics module in ALE3D to more naturally handle the long time scales associated with thermal cook-off. The application of the resulting framework to the analysis of the Scaled Thermal Explosion (STEX) experiments will be discussed.

Book Reactive Flow Modeling of Liquid Explosives Via ALE3D

Download or read book Reactive Flow Modeling of Liquid Explosives Via ALE3D written by and published by . This book was released on 2010 with total page 6 pages. Available in PDF, EPUB and Kindle. Book excerpt: We carried out reactive flow simulations of liquid explosives such as nitromethane using the hydrodynamic code ALE3D coupled with equations of state and reaction kinetics modeled by the thermochemical code Cheetah. The simulation set-up was chosen to mimic cylinder experiments. For pure unconfined nitromethane we find that the failure diameter and detonation velocity dependence on charge diameter are in agreement with available experimental results. Such simulations are likely to be useful for determining detonability and failure behavior for a wide range of experimental conditions and explosive compounds.

Book Numerical Modeling of Impact Initiation of High Explosives

Download or read book Numerical Modeling of Impact Initiation of High Explosives written by and published by . This book was released on 2006 with total page 16 pages. Available in PDF, EPUB and Kindle. Book excerpt: We performed continuum mechanics simulations to examine the behavior of energetic materials in Ballistic Chamber Impact (BIC) experiments, using an Arbitrary Lagrangian-Eulerian code (ALE3D). Our simulations revealed that interface friction plays an important role in inducing the formation of shear bands, which result in 'hot spots' for ignition. The temperature localization during BIC impact was found to be significant in materials with high yield strength. In those materials, there are multiple locations inside shear bands can achieve temperatures exceeding the threshold temperature for reaction. In addition, we investigated the relevant parameters influencing the pressure profile of a BIC test by numerical analysis from a simple phenomenological model. To our surprise, we found that the peaks of BIC pressure profiles not only can be a result of multi-center chemical reactions, but can also arise from factors associated apparatus configuration.

Book ALE3D Simulation and Measurement of Violence in a Fast Cookoff Experiment with LX 10

Download or read book ALE3D Simulation and Measurement of Violence in a Fast Cookoff Experiment with LX 10 written by and published by . This book was released on 2006 with total page 1 pages. Available in PDF, EPUB and Kindle. Book excerpt: We performed a computational and experimental analysis of fast cookoff of LX-10 (94.7% HMX, 5.3% Viton A) confined in a 2 kbar steel tube with reinforced end caps. A Scaled-Thermal-Explosion-eXperiment (STEX) was completed in which three radiant heaters were used to heat the vessel until ignition, resulting in a moderately violent explosion after 20.4 minutes. Thermocouple measurements showed tube temperatures as high as 340 C at ignition and LX-10 surface temperatures as high as 279 C, which is near the melting point of HMX. Three micro-power radar systems were used to measure mean fragment velocities of 840 m/s. Photonics Doppler Velocimeters (PDVs) showed a rapid acceleration of fragments over 80 [mu]s. A one-dimensional ALE3D cookoff model at the vessel midplane was used to simulate the heating, thermal expansion, LX-10 decomposition composition, and closing of the gap between the HE (High Explosive) and vessel wall. Although the ALE3D simulation terminated before ignition, the model provided a good representation of heat transfer through the case and across the dynamic gap to the explosive.

Book Modeling The Shock Initiation of PBX 9501 in ALE3D

Download or read book Modeling The Shock Initiation of PBX 9501 in ALE3D written by and published by . This book was released on 2008 with total page 13 pages. Available in PDF, EPUB and Kindle. Book excerpt: The SMIS (Specific Munitions Impact Scenario) experimental series performed at Los Alamos National Laboratory has determined the 3-dimensional shock initiation behavior of the HMX-based heterogeneous high explosive, PBX 9501. A series of finite element impact calculations have been performed in the ALE3D [1] hydrodynamic code and compared to the SMIS results to validate the code predictions. The SMIS tests use a powder gun to shoot scaled NATO standard fragments at a cylinder of PBX 9501, which has a PMMA case and a steel impact cover. The SMIS real-world shot scenario creates a unique test-bed because many of the fragments arrive at the impact plate off-center and at an angle of impact. The goal of this model validation experiments is to demonstrate the predictive capability of the Tarver-Lee Ignition and Growth (I & G) reactive flow model [2] in this fully 3-dimensional regime of Shock to Detonation Transition (SDT). The 3-dimensional Arbitrary Lagrange Eulerian hydrodynamic model in ALE3D applies the Ignition and Growth (I & G) reactive flow model with PBX 9501 parameters derived from historical 1-dimensional experimental data. The model includes the off-center and angle of impact variations seen in the experiments. Qualitatively, the ALE3D I & G calculations accurately reproduce the 'Go/No-Go' threshold of the Shock to Detonation Transition (SDT) reaction in the explosive, as well as the case expansion recorded by a high-speed optical camera. Quantitatively, the calculations show good agreement with the shock time of arrival at internal and external diagnostic pins. This exercise demonstrates the utility of the Ignition and Growth model applied in a predictive fashion for the response of heterogeneous high explosives in the SDT regime.

Book

    Book Details:
  • Author :
  • Publisher :
  • Release : 1984
  • ISBN :
  • Pages : pages

Download or read book written by and published by . This book was released on 1984 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modeling Three Dimensional Shock Initiation of PBX 9501 in ALE3D

Download or read book Modeling Three Dimensional Shock Initiation of PBX 9501 in ALE3D written by and published by . This book was released on 2008 with total page 13 pages. Available in PDF, EPUB and Kindle. Book excerpt: A recent SMIS (Specific Munitions Impact Scenario) experimental series performed at Los Alamos National Laboratory has provided 3-dimensional shock initiation behavior of the HMX-based heterogeneous high explosive, PBX 9501. A series of finite element impact calculations have been performed in the ALE3D [1] hydrodynamic code and compared to the SMIS results to validate and study code predictions. These SMIS tests used a powder gun to shoot scaled NATO standard fragments into a cylinder of PBX 9501, which has a PMMA case and a steel impact cover. This SMIS real-world shot scenario creates a unique test-bed because (1) SMIS tests facilitate the investigation of 3D Shock to Detonation Transition (SDT) within the context of a considerable suite of diagnostics, and (2) many of the fragments arrive at the impact plate off-center and at an angle of impact. A particular goal of these model validation experiments is to demonstrate the predictive capability of the ALE3D implementation of the Tarver-Lee Ignition and Growth reactive flow model [2] within a fully 3-dimensional regime of SDT. The 3-dimensional Arbitrary Lagrange Eulerian (ALE) hydrodynamic model in ALE3D applies the Ignition and Growth (I & G) reactive flow model with PBX 9501 parameters derived from historical 1-dimensional experimental data. The model includes the off-center and angle of impact variations seen in the experiments. Qualitatively, the ALE3D I & G calculations reproduce observed 'Go/No-Go' 3D Shock to Detonation Transition (SDT) reaction in the explosive, as well as the case expansion recorded by a high-speed optical camera. Quantitatively, the calculations show good agreement with the shock time of arrival at internal and external diagnostic pins. This exercise demonstrates the utility of the Ignition and Growth model applied for the response of heterogeneous high explosives in the SDT regime.

Book Measurements and ALE3D Simulations for Violence in a Scaled Thermal Explosion Experiment with LX 10 and AerMet 100 Steel

Download or read book Measurements and ALE3D Simulations for Violence in a Scaled Thermal Explosion Experiment with LX 10 and AerMet 100 Steel written by O. T. Strand and published by . This book was released on 2005 with total page 16 pages. Available in PDF, EPUB and Kindle. Book excerpt: We completed a Scaled Thermal Explosion Experiment (STEX) and performed ALE3D simulations for the HMX-based explosive, LX-10, confined in an AerMet 100 (iron-cobalt-nickel alloy) vessel. The explosive was heated at 1 C/h until cookoff at 182 C using a controlled temperature profile. During the explosion, the expansion of the tube and fragment velocities were measured with strain gauges, Photonic-Doppler-Velocimeters (PDVs), and micropower radar units. These results were combined to produce a single curve describing 15 cm of tube wall motion. A majority of the metal fragments were captured and cataloged. A fragment size distribution was constructed, and a typical fragment had a length scale of 2 cm. Based on these results, the explosion was considered to be a violent deflagration. ALE3D models for chemical, thermal, and mechanical behavior were developed for the heating and explosive processes. A four-step chemical kinetics model is employed for the HMX while a one-step model is used for the Viton. A pressure-dependent deflagration model is employed during the expansion. The mechanical behavior of the solid constituents is represented by a Steinberg-Guinan model while polynomial and gamma-law expressions are used for the equation of state of the solid and gas species, respectively. A gamma-law model is employed for the air in gaps, and a mixed material model is used for the interface between air and explosive. A Johnson-Cook model with an empirical rule for failure strain is used to describe fracture behavior. Parameters for the kinetics model were specified using measurements of the One-Dimensional-Time-to-Explosion (ODTX), while measurements for burn rate were employed to determine parameters in the burn front model. The ALE3D models provide good predictions for the thermal behavior and time to explosion, but the predicted wall expansion curve is higher than the measured curve. Possible contributions to this discrepancy include inaccuracies in the chemical models, integration of the momentum equation, and representation of the interfaces in the gaps. Two model problems were used to explore the effects of parameter variations on the fracture and fragmentation of AerMet 100 tube sections driven by the deflagration of LX-10. For the range of parameters considered, the model fragment sizes are of the same scale as the measured sizes.

Book High Explosives

    Book Details:
  • Author :
  • Publisher :
  • Release : 2011
  • ISBN :
  • Pages : pages

Download or read book High Explosives written by and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: