Download or read book Simulation of Field Water Use and Crop Yield written by R. A. Feddes and published by Halsted Press. This book was released on 1978-01-01 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theory of field water use: basics of water flow i unsaturated soils;water uptake by plants roots;numerical approximation of flow in soil-root systems. Theory of crop production:mathematical description of growts;water and actual production;calculation of potential production. Theprogram:program for field water use, SWATR;program for crop production,CROPR;execution of SWATR; execution of CROPR.
Download or read book Root Zone Water Quality Model written by Lajpat Ahuja and published by Water Resources Publication. This book was released on 2000 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: This publication comes with computer software and presents a comprehensive simulation model designed to predict the hydrologic response, including potential for surface and groundwater contamination, of alternative crop-management systems. It simulates crop development and the movement of water, nutrients and pesticides over and through the root zone for a representative unit area of an agricultural field over multiple years. The model allows simulation of a wide spectrum of management practices and scenarios with special features such as the rapid transport of surface-applied chemicals through macropores to deeper depths and the preferential transport of chemicals within the soil matrix via mobile-immobile zones. The transfer of surface-applied chemicals (pesticides in particular) to runoff water is also an important component.
Download or read book Climate Change and Terrestrial Ecosystem Modeling written by Gordon Bonan and published by Cambridge University Press. This book was released on 2019-02-21 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides an essential introduction to modeling terrestrial ecosystems in Earth system models for graduate students and researchers.
Download or read book Principles of Soil and Plant Water Relations written by M.B. Kirkham and published by Academic Press. This book was released on 2014-04-21 with total page 599 pages. Available in PDF, EPUB and Kindle. Book excerpt: Principles of Soil and Plant Water Relations, 2e describes the principles of water relations within soils, followed by the uptake of water and its subsequent movement throughout and from the plant body. This is presented as a progressive series of physical and biological interrelations, even though each topic is treated in detail on its own. The book also describes equipment used to measure water in the soil-plant-atmosphere system. At the end of each chapter is a biography of a scientist whose principles are discussed in the chapter. In addition to new information on the concept of celestial time, this new edition also includes new chapters on methods to determine sap flow in plants dual-probe heat-pulse technique to monitor water in the root zone. - Provides the necessary understanding to address advancing problems in water availability for meeting ecological requirements at local, regional and global scales - Covers plant anatomy: an essential component to understanding soil and plant water relations
Download or read book Soil Physics with Python written by Marco Bittelli and published by . This book was released on 2015 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: This innovative study presents concepts and problems in soil physics, and provides solutions using original computer programs. It provides a close examination of physical environments of soil, including an analysis of the movement of heat, water and gases. The authors employ the programminglanguage Python, which is now widely used for numerical problem solving in the sciences. In contrast to the majority of the literature on soil physics, this text focuses on solving, not deriving, differential equations for transport. Using numerical procedures to solve differential equations allowsthe solution of quite difficult problems with fairly simple mathematical tools. Numerical methods convert differential into algebraic equations, which can be solved using conventional methods of linear algebra. Each chapter introduces a soil physics concept, and proceeds to develop computer programsto solve the equations and illustrate the points made in the discussion.Problems at the end of each chapter help the reader practise using the concepts introduced. The text is suitable for advanced undergraduates, graduates and researchers of soil physics. It employs an open source philosophy where computer code is presented, explained and discussed, and provides thereader with a full understanding of the solutions. Once mastered, the code can be adapted and expanded for the user's own models, fostering further developments. The Python tools provide a simple syntax, Object Oriented Programming techniques, powerful mathematical and numerical tools, and a userfriendly environment.
Download or read book Limitations to Efficient Water Use in Crop Production written by Howard M. Taylor and published by . This book was released on 1983 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Modelling Crop weed Interactions written by Martin J. Kropff and published by Int. Rice Res. Inst.. This book was released on 1993 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: General introduction; Empirical models for crop-weed competition; Eco-physiological models for crop-weed competition; Mechanisms of competition for light; Mechanisms of competition for water; Mechanisms of competition for nitrogen; Eco-physiological characterization of the species; Understanding crop-weed interaction in field situation; The impact of environmental and genetic factors; Practical applications.
Download or read book Understanding Options for Agricultural Production written by G.Y. Tsuji and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first premise of this book is that farmers need access to options for improving their situation. In agricultural terms, these options might be manage ment alternatives or different crops to grow, that can stabilize or increase household income, that reduce soil degradation and dependence on off-farm inputs, or that exploit local market opportunities. Farmers need a facilitating environment, in which affordable credit is available if needed, in which policies are conducive to judicious management of natural resources, and in which costs and prices of production are stable. Another key ingredient of this facilitating environment is information: an understanding of which options are viable, how these operate at the farm level, and what their impact may be on the things that farmers perceive as being important. The second premise is that systems analysis and simulation have an impor tant role to play in fostering this understanding of options, traditional field experimentation being time-consuming and costly. This book summarizes the activities of the International Benchmark Sites Network for Agrotechnology Transfer (IBSNAT) project, an international initiative funded by the United States Agency for International Development (USAID). IBSNAT was an attempt to demonstrate the effectiveness of understanding options through systems analysis and simulation for the ultimate benefit of farm households in the tropics and subtropics. The idea for the book was first suggested at one of the last IBSNAT group meetings held at the University of Hawaii in 1993.
Download or read book Methods of Soil Analysis Part 4 written by Jacob H. Dane and published by John Wiley & Sons. This book was released on 2020-05-27 with total page 1744 pages. Available in PDF, EPUB and Kindle. Book excerpt: The best single reference for both the theory and practice of soil physical measurements, Methods, Part 4 adopts a more hierarchical approach to allow readers to easily find their specific topic or measurement of interest. As such it is divided into eight main chapters on soil sampling and statistics, the solid, solution, and gas phases, soil heat, solute transport, multi-fluid flow, and erosion. More than 100 world experts contribute detailed sections.
Download or read book Unsaturated zone Modeling written by R.A. Feddes and published by Springer Science & Business Media. This book was released on 2004-10-11 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mankind has manipulated the quantity and quality of soil water for millennia. Food production was massively increased through fertilization, irrigation and drainage. But malpractice also caused degradation of immense areas of once fertile land, rendering it totally unproductive for many generations. In populated areas, the pollutant load ever more often exceeds the soil’s capacity for buffering and retention, and large volumes of potable groundwater have been polluted or are threatened to be polluted in the foreseeable future. In the past decades, the role of soil water in climate patterns has been recognized but not yet fully understood. The soil-science community responded to this diversity of issues by developing numerical models to simulate the behavior of water and solutes in soils. These models helped improve our understanding of unsaturated-zone processes and develop sustainable land-management practices. Aimed at professional soil scientists, soil-water modelers, irrigation engineers etc., this book discusses our progress in soil-water modeling. Top scientists present case studies, overviews and analyses of strengths, weaknesses, opportunities and threats related to soil-water modeling. The contributions cover a wide range of spatial scales, and discuss fundamental aspects of unsaturated-zone modeling as well as issues related to the application of models to real-world problems.
Download or read book Plant Roots written by Amram Eshel and published by CRC Press. This book was released on 2013-04-17 with total page 861 pages. Available in PDF, EPUB and Kindle. Book excerpt: The decade since the publication of the third edition of this volume has been an era of great progress in biology in general and the plant sciences in particular. This is especially true with the advancements brought on by the sequencing of whole genomes of model organisms and the development of "omics" techniques. This fourth edition of Plant Roots: The Hidden Half reflects these developments that have transformed not only the field of biology, but also the many facets of root science. Highlights of this new edition include: The basics of root research and their evolution and role in the global context of soil development and atmosphere composition New understandings about roots gained in the post-genomic era, for example, how the development of roots became possible, and the genetic basis required for this to occur The mechanisms that determine root structure, with chapters on cellular patterning, lateral root and vascular development, the molecular basis of adventitious roots, and other topics Plant hormone action and signaling pathways that control root development, including new chapters on strigolactones and brassinosteroids Soil resource acquisition from agricultural and ecological perspectives Root response to stress, with chapters that address the impact of the genomic revolution on this topic Root-rhizosphere interactions, from beneficial microorganisms to detrimental nematodes Modern research techniques for the field and the lab Each chapter not only presents a clear summation of the topic under discussion, but also includes a vision of what is to be expected in the years to come. The wide coverage of themes in this volume continues the tradition that makes this work recognized as a fundamental source of information for root scientists at all levels.
Download or read book Roots written by Jun J. Abe and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: The root is the organ that functions as the interface between the plant and the earth environment. Many human management practices involving crops, forests and natural vegetation also affect plant growth through the soil and roots. Understanding the morphology and function of roots from the cellular level to the level of the whole root system is required for both plant production and environmental protection. This book is at the forefront of plant root science (rhizology), catering to professional plant scientists and graduate students. It covers root development, stress physiology, ecology, and associations with microorganisms. The chapters are selected papers originally presented at the 6th Symposium of the International Society of Root Research, where plant biologists, ecologists, soil microbiologists, crop scientists, forestry scientists, and environmental scientists, among others, gathered to discuss current research results and to establish rhizology as a newly integrated research area.
Download or read book The Soil as a Reactor written by Jörg Richter and published by . This book was released on 1987 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: The approach followed in this book. Statics and kinetics. Dynamic approach. Balance approach. The system in thermodynamics. Fundamentals of the theory of potential. The macroscopic approach. Aggregation and buffering. The term "model". Classifying the processes in the soil. The organization of this book. Heat conduction in soils. Significance of heat dispersion in soils. Phenomena of heat dispersion. Examples of daily temperature courses in soils. Example of an annual course of the temperature. Heat conductivity and capacity in relation to soil composition and structure. Deriving the transport equation using local balance and principle of causality. Local balance for matter and energy without transformation. One-dimensional transport equation of matter and energy in a rigid system with continuous pores. The equation for heat transport. Analytical solutions of the heat transport equation with constant aT. The stationary case. Sudden change in temperature as boundary condition. Oscillating temperature as boundary condition. Numeriacal solution of the heat transport equation with constant aT. Heat balance of the soil and heat conversion. Estimating the soil-absorbed energy. Heat to evaporate 1 mm water. Gas regime of soils. The significance of the gas regime in the soil. Phenomena in soil gas regime. Profiles of CO2 and O2 concentrations in the soil. Cycles and depth profiles of CO2 production. Parameters of the gas regime in soils. The apparent diffusion coefficient Ds. The storage of gases in the soil. Quantitative description of the gas regime in soils. Extending the transport equation. Partial pressure and diffusive gas transport. Solving the equation of gas regime. An analytical solution for the stationary case. Numerical solution for a stationary example. Applications of the gas transport and gas regime equation. The measurement of the diffusion coeficient Ds. The "tortuous" macropore as a structure model. Vapour flow in the soil. Micro-anoxia as a problem of aeration, and the redoxpotencial Eh. Soil water regime. The significance of soil water; annual balances. Phenomena of soil water flow. Water tension and water content profiles in the soil. Flows at the boundary area and in the soil. Hydraulic conductivity and the moisture retention curve. The hydraulic conductivity K( m). The moisture retention curve m(0). The water regime equation. The local water balance. The equation for the water flow qw. The hydraulic potential h. Different formulations of the water transport equation. Characteristic flow conditions of water in the bare soil. Equilibrium and quasi-equilibrium. Stationary and quasi-stationary conditions. Non-stationary flow. Applications and numerical solutions for the water regime equation. Moisture equilibrium in the soil. stationary flow in the soil during drying in summer. Solution methods for non-stationary flow. Simple water regime models for the flat, homogeneous cropped soil; the root uptake function P(z,t). Calculating the evapotranspiration E. The water regime of a wheat field on a loess-Parabraunerde. Regime of matter in soils. Significance of "matter" in the soil. Extension of the transport the transport models. Phenomena of ion flows. Movement of non-interacting ions during winter. Movement of interacting ions during winter. Paramenters of solute transport. Transport parameter: effective dispersion coefficient Db. Quantity/intensity relation for compenents that do interact with the soil matrix; the specific storage capacity B. Specific storage capacity C (and the diffusion coefficient D). Coupled transport flows of components that do not interact with the soil matrix. General description of coupled transport. Transport of dissolved non-interacting components in the soil. Particle charge. Introduction to reaction dynamics. Fundamentals of the course of reactions. Order of elementary reactions in homogeneous systems. A special case: second-order reactions of sigmoidal shape. Complex reactions in homogeneous systems. Heterogeneous reactions (interactions with the surfaces of solids). Models for reactive components and ions in the soil. Dynamic description of interactions of substances with the solid phase. Description of interactions of ions with charged surfaces of the solid phase (ions-exchange). Simple regime models of substances in the soil. Models for nitrification and simultaneous movement of nitrogen. Simulating the nitrogen regime of loess field soils during winter. A site model for the displacement of physically interacting ions for the example potassium. Simulating the degradation of herbicides in soils. Simulating the behaviour of heavy metals in the soil. "Complete"models of material components regime. Looking ahead. Beyond the assumptions. The soil as a non-rigid solid. Mechanical deformations and changes of the state of stress. Mechanical cause-and-effect relations. Changes of the parameters with mechanical deformations. The explicit modelling of nutrient uptake by plants. Field and regional models. Simulating solute transport in heterogeneous pore systems. Geostatistical formulation of spatial variability. Combining deterministic and stochastic approaches: Monte-Carlo simulation of salt transport. Alternative approaches: plate and compartment models. Modelling soil development. Appendix. Numerical solutions for non-stationary water transport and for solute transport under stationary flow conditions. Vertical solute movement under stationary flow conditions. Vertical water transport. Difference formulationwith the help of the Taylor equation. Gas solubilities in water. Conversion of units. List of symbols and indices.
Download or read book Three dimensional Modelling of Soil plant Interactions written by Tom Schröder and published by Forschungszentrum Jülich. This book was released on 2009 with total page 89 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Application of Soil Physics in Environmental Analyses written by Wenceslau Geraldes Teixeira and published by Springer. This book was released on 2014-06-30 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: The importance to preserve soil and water have is increasingly recognized. Agricultural practices and ecological trends both affect and are affected by soil physical properties. The more frequency of natural disasters, as landslides and thunderstorms addresses the importance to integrate soil characteristics in predictive models. Soil physics research has grown considerably specially in the use of innovative sensors, soil databases, and modeling techniques have been introduced into soil water relationship and environmental monitoring. Those advances are thoroughly dispersed in articles and conference proceedings In this volume, the authors will bring together the effectiveness of many new field and lab sensors and examine the current state-of-the-art in modeling and data analysis. It also includes innovative approaches and case studies in tropical soils. Future directions in soil physics research are given by key researchers in this discipline.
Download or read book The Rhizosphere written by Zoe G. Cardon and published by Elsevier. This book was released on 2011-04-28 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: Below the soil surface, the rhizosphere is the dynamic interface among plant roots, soil microbes and fauna, and the soil itself, where biological as well as physico-chemical properties differ radically from those of bulk soil. The Rhizosphere is the first ecologically-focused book that explicitly establishes the links from extraordinarily small-scale processes in the rhizosphere to larger-scale belowground patterns and processes. This book includes chapters that emphasize the effects of rhizosphere biology on long-term soil development, agro-ecosystem management and responses of ecosystems to global change. Overall, the volume seeks to spur development of cross-scale links for understanding belowground function in varied natural and managed ecosystems. - First cross-scale ecologically-focused integration of information at the frontier of root, microbial, and soil faunal biology - Establishes the links from extraordinarily small-scale processes in the rhizosphere to larger-scale belowground patterns and processes - Includes valuable information on ecosystem response to increased atmospheric carbon dioxide and enhanced global nitrogen deposition - Chapters written by a variety of experts, including soil scientists, microbial and soil faunal ecologists, and plant biologists
Download or read book Handbook of Processes and Modeling in the Soil Plant System written by Rolf Nieder and published by CRC Press. This book was released on 2003-09-15 with total page 800 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn to create and use simulation models—the most reliable and cost-effective tools for predicting real-world results! The Handbook of Processes and Modeling in the Soil-Plant System is the first book to present a holistic view of the processes within the soil-plant-atmosphere continuum. Unlike other publications, which tend to be more specialized, this book covers nearly all of the processes in the soil-plant system, including the fundamental processes of soil formation, degradation, and the dynamics of water and matter. It also illustrates how simulation modeling can be used to understand and forecast multiple interactions among various processes and predict their environmental impact. This unique volume assembles information that until now was scattered among journals, bulletins, reports, and symposia proceedings to present models that simulate almost all of the processes occurring in the soil-plant system and explores the results that these models are capable of producing. With chapters authored by experts with years of research and teaching experience, the Handbook of Processes and Modeling in the Soil-Plant System examines: physical, chemical, and biological soil processes the soil formation and weathering process and its modeling the impact of radioactive fallout on the soil-plant system soil degradation processes and ways to control them water and matter dynamics in the soil-plant system growth and development of crops at various levels of production the potentials and limitations of using simulation models Students, educators, and professionals alike will find the Handbook of Processes and Modeling in the Soil-Plant System an invaluable reference on the soil-plant-atmosphere system and an ideal tool to help develop an effective decision support system.