Download or read book Cyclic Plasticity of Metals written by Hamid Jahed and published by Elsevier. This book was released on 2021-11-11 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cyclic Plasticity of Metals: Modeling Fundamentals and Applications provides an exhaustive overview of the fundamentals and applications of various cyclic plasticity models including forming and spring back, notch analysis, fatigue life prediction, and more. Covering metals with an array of different structures, such as hexagonal close packed (HCP), face centered cubic (FCC), and body centered cubic (BCC), the book starts with an introduction to experimental macroscopic and microscopic observations of cyclic plasticity and then segues into a discussion of the fundamentals of the different cyclic plasticity models, covering topics such as kinematics, stress and strain tensors, elasticity, plastic flow rule, and an array of other concepts. A review of the available models follows, and the book concludes with chapters covering finite element implementation and industrial applications of the various models. - Reviews constitutive cyclic plasticity models for various metals and alloys with different cell structures (cubic, hexagonal, and more), allowing for more accurate evaluation of a component's performance under loading - Provides real-world industrial context by demonstrating applications of cyclic plasticity models in the analysis of engineering components - Overview of latest models allows researchers to extend available models or develop new ones for analysis of an array of metals under more complex loading conditions
Download or read book Crystal Plasticity Finite Element Methods written by Franz Roters and published by John Wiley & Sons. This book was released on 2011-08-04 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.
Download or read book NASA Technical Memorandum written by and published by . This book was released on 1994 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Superalloys 2024 written by Jonathan Cormier and published by Springer Nature. This book was released on with total page 1121 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Computational Methods for Plasticity written by Eduardo A. de Souza Neto and published by John Wiley & Sons. This book was released on 2011-09-21 with total page 718 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of computational plasticity encapsulates the numerical methods used for the finite element simulation of the behaviour of a wide range of engineering materials considered to be plastic – i.e. those that undergo a permanent change of shape in response to an applied force. Computational Methods for Plasticity: Theory and Applications describes the theory of the associated numerical methods for the simulation of a wide range of plastic engineering materials; from the simplest infinitesimal plasticity theory to more complex damage mechanics and finite strain crystal plasticity models. It is split into three parts - basic concepts, small strains and large strains. Beginning with elementary theory and progressing to advanced, complex theory and computer implementation, it is suitable for use at both introductory and advanced levels. The book: Offers a self-contained text that allows the reader to learn computational plasticity theory and its implementation from one volume. Includes many numerical examples that illustrate the application of the methodologies described. Provides introductory material on related disciplines and procedures such as tensor analysis, continuum mechanics and finite elements for non-linear solid mechanics. Is accompanied by purpose-developed finite element software that illustrates many of the techniques discussed in the text, downloadable from the book’s companion website. This comprehensive text will appeal to postgraduate and graduate students of civil, mechanical, aerospace and materials engineering as well as applied mathematics and courses with computational mechanics components. It will also be of interest to research engineers, scientists and software developers working in the field of computational solid mechanics.
Download or read book Crystal Plasticity at Micro and Nano scale Dimensions written by Ronald W. Armstrong and published by MDPI. This book was released on 2021-08-31 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present collection of articles focuses on the mechanical strength properties at micro- and nanoscale dimensions of body-centered cubic, face-centered cubic and hexagonal close-packed crystal structures. The advent of micro-pillar test specimens is shown to provide a new dimensional scale for the investigation of crystal deformation properties. The ultra-small dimensional scale at which these properties are measured is shown to approach the atomic-scale level at which model dislocation mechanics descriptions of crystal slip and deformation twinning behaviors are proposed to be operative, including the achievement of atomic force microscopic measurements of dislocation pile-up interactions with crystal grain boundaries or with hard surface coatings. A special advantage of engineering designs made at such small crystal and polycrystalline dimensions is the achievement of an approximate order-of-magnitude increase in mechanical strength levels. Reasonable extrapolation of macro-scale continuum mechanics descriptions of crystal strength properties at micro- to nano-indentation hardness measurements are demonstrated, in addition to reports on persistent slip band observations and fatigue cracking behaviors. High-entropy alloy, superalloy and energetic crystal properties are reported along with descriptions of deformation rate sensitivities, grain boundary structures, nano-cutting, void nucleation/growth micromechanics and micro-composite electrical properties.
Download or read book Superalloys 2020 written by Sammy Tin and published by Springer Nature. This book was released on 2020-08-28 with total page 1098 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 14th International Symposium on Superalloys (Superalloys 2020) highlights technologies for lifecycle improvement of superalloys. In addition to the traditional focus areas of alloy development, processing, mechanical behavior, coatings, and environmental effects, this volume includes contributions from academia, supply chain, and product-user members of the superalloy community that highlight technologies that contribute to improving manufacturability, affordability, life prediction, and performance of superalloys.
Download or read book Deformation and Evolution of Life in Crystalline Materials written by Xijia Wu and published by CRC Press. This book was released on 2019-04-09 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book walks you through the fundamental deformation and damage mechanisms. It lends the reader the key to open the doors into the maze of deformation/fracture phenomena under various loading conditions. Furthermore it provides the solution method to material engineering design and analysis problems, for those working in the aerospace, automotive or energy industries. The book introduces the integrated creep-fatigue theory (ICFT) that considers holistic damage evolution from surface/subsurface crack nucleation to propagation in coalescence with internally-distributed damage/discontinuities.
Download or read book Superalloys 2012 written by Eric S. Huron and published by John Wiley & Sons. This book was released on 2012-10-02 with total page 952 pages. Available in PDF, EPUB and Kindle. Book excerpt: A superalloy, or high-performance alloy, is an alloy that exhibits excellent mechanical strength at high temperatures. Superalloy development has been driven primarily by the aerospace and power industries. This compilation of papers from the Twelfth International Symposium on Superalloys, held from September 9-13, 2012, offers the most recent technical information on this class of materials.
Download or read book Mathematical Concepts and Applications in Mechanical Engineering and Mechatronics written by Ram, Mangey and published by IGI Global. This book was released on 2016-10-25 with total page 519 pages. Available in PDF, EPUB and Kindle. Book excerpt: The application of mathematical concepts has proven to be beneficial within a number of different industries. In particular, these concepts have created significant developments in the engineering field. Mathematical Concepts and Applications in Mechanical Engineering and Mechatronics is an authoritative reference source for the latest scholarly research on the use of applied mathematics to enhance the current trends and productivity in mechanical engineering. Highlighting theoretical foundations, real-world cases, and future directions, this book is ideally designed for researchers, practitioners, professionals, and students of mechatronics and mechanical engineering.
Download or read book Engine Structures written by and published by . This book was released on 1988 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Nickel Base Single Crystals Across Length Scales written by Loeïz Nazé and published by Elsevier. This book was released on 2021-09-28 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nickel Base Single Crystals Across Length Scales is addresses the most advanced knowledge in metallurgy and computational mechanics and how they are applied to superalloys used as bare materials or with a thermal barrier coating system. Joining both aspects, the book helps readers understand the mechanisms driving properties and their evolution from fundamental to application level. These guidelines are helpful for students and researchers who wish to understand issues and solutions, optimize materials, and model them in a cross-check analysis, from the atomistic to component scale. The book is useful for students and engineers as it explores processing, characterization and design. - Provides an up-to-date overview on the field of superalloys - Covers the relationship between microstructural evolution and mechanical behavior at high temperatures - Discusses both basic and advanced modeling and characterization techniques - Includes case studies that illustrate the application of techniques presented in the book
Download or read book Superalloys written by Mahmood Aliofkhazraei and published by BoD – Books on Demand. This book was released on 2015-11-25 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: Superalloy, or high-performance alloy, is an alloy that exhibits several key characteristics: excellent mechanical strength, resistance to thermal creep deformation, good surface stability, and resistance to corrosion or oxidation. The crystal structure is typically face-centered cubic austenitic. Superalloy development has relied heavily on both chemical and process innovations. Superalloys develop high temperature strength through solid solution strengthening. An important strengthening mechanism is precipitation strengthening which forms secondary phase precipitates such as gamma prime and carbides. Oxidation or corrosion resistance is provided by elements such as aluminium and chromium. This book collects new developments about superalloys.
Download or read book The Superalloys written by Roger C. Reed and published by Cambridge University Press. This book was released on 2008-07-31 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: Superalloys are unique high-temperature materials used in gas turbine engines, which display excellent resistance to mechanical and chemical degradation. This book introduces the metallurgical principles which have guided their development. Suitable for graduate students and researchers, it includes exercises and additional resources at www.cambridge.org/9780521859042.
Download or read book Bachelet high temp erature mater written by E. Bachelet and published by Springer Science & Business Media. This book was released on 1990-10-15 with total page 930 pages. Available in PDF, EPUB and Kindle. Book excerpt: Themes reflect the work carried out within the framework of COST-501 and of COST-505 the latter being concerned with materials for steam turbines and the first results of the concerted action COST-501/II 'High temperature materials for power engineering' initiated in 1988.
Download or read book Advanced Materials Modelling for Structures written by Holm Altenbach and published by Springer Science & Business Media. This book was released on 2013-02-05 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents the major outcome of the IUTAM symposium on “Advanced Materials Modeling for Structures”. It discusses advances in high temperature materials research, and also to provides a discussion the new horizon of this fundamental field of applied mechanics. The topics cover a large domain of research but place a particular emphasis on multiscale approaches at several length scales applied to non linear and heterogeneous materials. Discussions of new approaches are emphasised from various related disciplines, including metal physics, micromechanics, mathematical and computational mechanics.
Download or read book Mechanical Behaviour of Engineering Materials written by Joachim Roesler and published by Springer Science & Business Media. This book was released on 2007-10-16 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: How do engineering materials deform when bearing mechanical loads? To answer this crucial question, the book bridges the gap between continuum mechanics and materials science. The different kinds of material deformation are explained in detail. The book also discusses the physical processes occurring during the deformation of all classes of engineering materials and shows how these materials can be strengthened to meet the design requirements. It provides the knowledge needed in selecting the appropriate engineering material for a certain design problem. This book is both a valuable textbook and a useful reference for graduate students and practising engineers.