EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Modeling and Simulation of the Autonomous Underwater Vehicle  Autolycus

Download or read book Modeling and Simulation of the Autonomous Underwater Vehicle Autolycus written by Sia Chuan Tang and published by . This book was released on 1999 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Autonomous Underwater Vehicles

Download or read book Autonomous Underwater Vehicles written by Sabiha Wadoo and published by CRC Press. This book was released on 2017-12-19 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: Underwater vehicles present some difficult and very particular control system design problems. These are often the result of nonlinear dynamics and uncertain models, as well as the presence of sometimes unforeseeable environmental disturbances that are difficult to measure or estimate. Autonomous Underwater Vehicles: Modeling, Control Design, and Simulation outlines a novel approach to help readers develop models to simulate feedback controllers for motion planning and design. The book combines useful information on both kinematic and dynamic nonlinear feedback control models, providing simulation results and other essential information, giving readers a truly unique and all-encompassing new perspective on design. Includes MATLAB® Simulations to Illustrate Concepts and Enhance Understanding Starting with an introductory overview, the book offers examples of underwater vehicle construction, exploring kinematic fundamentals, problem formulation, and controllability, among other key topics. Particularly valuable to researchers is the book’s detailed coverage of mathematical analysis as it applies to controllability, motion planning, feedback, modeling, and other concepts involved in nonlinear control design. Throughout, the authors reinforce the implicit goal in underwater vehicle design—to stabilize and make the vehicle follow a trajectory precisely. Fundamentally nonlinear in nature, the dynamics of AUVs present a difficult control system design problem which cannot be easily accommodated by traditional linear design methodologies. The results presented here can be extended to obtain advanced control strategies and design schemes not only for autonomous underwater vehicles but also for other similar problems in the area of nonlinear control.

Book Analytical Modeling and Simulation of an AUV with Five Control Surfaces

Download or read book Analytical Modeling and Simulation of an AUV with Five Control Surfaces written by John Tomasi (Mechanical engineer) and published by . This book was released on 2006 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This research describes the dynamic modeling and numerical simulation of an autonomous underwater vehicle (AUV) with five hydrodynamic control surfaces, necessary for the development of an autopilot algorithm, based solely upon analytical methodologies. The purpose of this research was to demonstrate the ability to develop a low. order approximation of the dynamics and control characteristics of an underwater vehicle that is complete enough to validate a specific design before physical construction begins; therefore, allowing for a more cost effective virtual design, test, and evaluation process. The AUV model developed in this study takes into consideration inertia, hydrostatic forces, hydrodynamic forces, propulsion forces, control fin forces, added mass, and damping. The model assumes that the vehicle is sufficiently far enough away from the ocean bottom and surface so that their effects can be ignored. The necessary stability and control derivatives were determined through the use of engineering formulae. The mathematical model represents a general, nonlinear, six degrees of freedom model, and it is similar to those used to carry out atmospheric flight simulations. The non-linear model was linearized about the design (equilibrium) condition to obtain a linear state-space vehicle model.

Book Dynamic Simulation Modeling and Control of the Odyssey III Autonomous Underwater Vehicle

Download or read book Dynamic Simulation Modeling and Control of the Odyssey III Autonomous Underwater Vehicle written by Mark Edwin Rentschler and published by . This book was released on 2003 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Dynamics Modeling and Performance Evaluation of an Autonomous Underwater Vehicle

Download or read book Dynamics Modeling and Performance Evaluation of an Autonomous Underwater Vehicle written by Jason P. Evans and published by . This book was released on 2003 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Verification of a 6 degree of Freedom Simulation Model for the REMUS AUV

Download or read book Verification of a 6 degree of Freedom Simulation Model for the REMUS AUV written by Timothy Jason Prestero and published by . This book was released on 2001 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mproving the performance of modular, low-cost autonomous underwater vehicles (AUVs) in such applications as long-range oceanographic survey, autonomous docking, and shallow-water mine countermeasures requires improving the vehicles' maneuvering precision and battery life. These goals can be achieved through the improvement of the vehicle control system. A vehicle dynamics model based on a combination of theory and empirical data would provide an efficient platform for vehicle control system development, and an alternative to the typical trial-and-error method of vehicle control system field tuning. As there exists no standard procedure for vehicle modeling in industry, the simulation of each vehicle system represents a new challenge. Developed by von Alt and associates at the Woods Hole Oceanographic Institute, the REMUS AUV is a small, low-cost platform serving in a range of oceanographic applications. This thesis describes the development and verification of a six degree of freedom, non-linear simulation model for the REMUS vehicle, the first such model for this platform. In this model, the external forces and moments resulting from hydrostatics, hydrodynamic lift and drag, added mass, and the control inputs of the vehicle propeller and fins are all defined in terms of vehicle coefficients. This thesis describes the derivation of these coefficients in detail. The equations determining the coefficients, as well as those describing the vehicle rigid-body dynamics, are left in non-linear form to better simulate the inherently non-linear behavior of the vehicle. Simulation of the vehicle motion is achieved through numeric integration of the equations of motion. The simulator output is then checked against vehicle dynamics data collected in experiments performed at sea. The simulator is shown to accurately model the motion of the vehicle.

Book Development of a Six Degree of Freedom Simulation Model for the REMUS Autonomous Underwater Vehicle

Download or read book Development of a Six Degree of Freedom Simulation Model for the REMUS Autonomous Underwater Vehicle written by and published by . This book was released on 2002 with total page 7 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper describes the development and verification of a six degree of freedom, non-linear simulation model for the REMUS AUV, the first such model for this platform. In this model, the external forces and moments resulting from hydrostatics, hydrodynamic lift and drag, added mass, and the control inputs of the vehicle propeller and fins are all defined in terms of vehicle coefficients. This paper briefly describes the derivation of these coefficients. The equations determining the coefficients, as well as those describing the vehicle rigid-body dynamics, are left in non-linear form to better simulate the inherently non-linear behavior of the vehicle. Simulation of the vehicle motion is achieved through numeric integration of the equations of motion. The simulator output is then verified against vehicle dynamics data collected in experiments performed at sea. The simulator is shown to accurately model the motion of the vehicle. The paper concludes with recommendations for future model validation experiments.

Book Modeling of a Small Remotely Operated Underwater Vehicle for Autonomous Navigation and Control

Download or read book Modeling of a Small Remotely Operated Underwater Vehicle for Autonomous Navigation and Control written by Wilmer Rustrian and published by . This book was released on 2016 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: Small scale unmanned underwater vehicles provide an opportunity to safely and efficiently complete tasks such as boat hull inspection and subsea development survey. These Remotely Operated Vehicles (ROVs) can be made more efficient if navigating underwater autonomously. This requires the development of highly accurate navigation and control algorithms, which, in turn, require a high-fidelity dynamic model of the vehicle based on first principles and validated by empirical data. In this thesis, a simulation of a dynamics model for a commercially available ROV is developed. Empirical data from open-loop testing is used to generate a second-order transfer function using system identification to validate the simulation model. The transient response characteristics of the experimentally generated transfer function are then utilized to fine-tune the physical parameters in the simulation model. Finally, autopilot systems are designed using classical control theory to enable autonomous control over the attitudes and depth of the underwater vehicle.

Book Modeling and Guidance of an Underactuated Autonomous Underwater Vehicle

Download or read book Modeling and Guidance of an Underactuated Autonomous Underwater Vehicle written by Ali H M Wadi and published by . This book was released on 2017 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Autonomous Underwater Vehicles (AUVs) have become an indispensable tool that is employed by an array of fields. From the inspection of underwater cables and pipelines, to the monitoring of fish pens and coral reefs, to the detection and disposal of mines, and to the executing search and rescue operations, AUV research and development has received a lot of attention. This thesis is concerned with the mathematical modeling of an underactuated AUV to execute its missions. The modeling task entails identification of the numerous parameters of the vehicle. A finite element analysis software was used to estimate the parameters describing drag and hydrodynamic mass phenomena. While the proposed underactuated configuration promotes the deployment of more energy-efficient vehicles, this configuration imposes complications on the guidance and motion control tasks as the vehicle becomes constrained in the way it can reach certain positions or perform certain motions (anholonomy). To tackle this trajectory tracking guidance problem, a model-based controller that overcomes the underactuated nature of the vehicle was designed. This controller was further enhanced by the novel development and application of a Universal Adaptive Stabilizer-based adaptation law that aims to minimize controller effort, reject noise, and provide robust trajectory tracking. The adaptation is governed by a statistical management system to ensure proper operation in a noisy underwater environment. Moreover, the navigation problem is touched upon by implementing a sensor fusion algorithm to estimate the vehicle state in its noisy environment. The algorithm investigates an Extended Kalman Filter as well as an Unscented Kalman Filter to fuse the available information from sensors with the modeled dynamics of the vehicle and provide better estimates of the vehicle state. Additionally, the hardware and software was integrated in a Robot Operating System setting, and a Gazebo-based simulation environment that enables the visual depiction and testing of algorithms on the considered AUV was developed. The parameter identification methodology compared well to published analytical and empirical forms, the proposed adaptation law outperformed traditional techniques like Adaptive Proportional Controllers, and the gain management system demonstrated excellent potential at maintaining stable operation of the vehicle in very noisy environments."--Abstract.

Book Computational Hydrodynamics and Control Modeling for Autonomous Underwater Vehicles

Download or read book Computational Hydrodynamics and Control Modeling for Autonomous Underwater Vehicles written by and published by . This book was released on 2003 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: The long term objective of the program is to develop predictive technologies to support virtual design and evaluation of underwater vehicles systems. CFD technologies will be used to protect hydrodynamic models for AUVs and those models will be coupled with control system design and modeling tools to allow vehicle conceptual design to be evaluated within the context of a realistic mission. The objectives of this effort were to compare the forces and moments acting on a maneuvering AUV predicted by computational fluid dynamics (CFD) code with similar data collected aboard an operational AUV. In particular, the multi-block Navier-Stokes flow solver UNCLE (Unsteady Computational of Field Equations) was used in this effort.

Book Autonomous Underwater Vehicles

Download or read book Autonomous Underwater Vehicles written by Jing Yan and published by Springer Nature. This book was released on 2021-11-01 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: Autonomous underwater vehicles (AUVs) are emerging as a promising solution to help us explore and understand the ocean. The global market for AUVs is predicted to grow from 638 million dollars in 2020 to 1,638 million dollars by 2025 – a compound annual growth rate of 20.8 percent. To make AUVs suitable for a wider range of application-specific missions, it is necessary to deploy multiple AUVs to cooperatively perform the localization, tracking and formation tasks. However, weak underwater acoustic communication and the model uncertainty of AUVs make achieving this challenging. This book presents cutting-edge results regarding localization, tracking and formation for AUVs, highlighting the latest research on commonly encountered AUV systems. It also showcases several joint localization and tracking solutions for AUVs. Lastly, it discusses future research directions and provides guidance on the design of future localization, tracking and formation schemes for AUVs. Representing a substantial contribution to nonlinear system theory, robotic control theory, and underwater acoustic communication system, this book will appeal to university researchers, scientists, engineers, and graduate students in control theory and control engineering who wish to learn about the core principles, methods, algorithms, and applications of AUVs. Moreover, the practical localization, tracking and formation schemes presented provide guidance on exploring the ocean. The book is intended for those with an understanding of nonlinear system theory, robotic control theory, and underwater acoustic communication systems.

Book Autonomous Underwater Vehicles

Download or read book Autonomous Underwater Vehicles written by Cynthia Mitchell and published by . This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gravity-gradient and magnetic-gradient inversion equations are combined to estimate the orientation and distance of an underwater object. The CKF algorithm based on EMMAF algorithm and Spherical-Radial is proposed and is applied to the fault diagnosis of slaver AUV in multi AUV collaborative positioning system. Simulation results are used to analyze the advantages and disadvantages of the three algorithms. This book looks at how a Service-Oriented Agent Architecture (SOAA) for marine robots is endowed with resilient capabilities in order to build a robust (fault-tolerant) vehicle control approach. Particular attention is paid to cognitive RCAs based on agent technologies and any other smart solution already applied or potentially applicable to UMVs. The book also presents current and future trends of RCAs for UMVs.

Book A Real Time Autonomous Underwater Vehicle Dynamic Simulator

Download or read book A Real Time Autonomous Underwater Vehicle Dynamic Simulator written by and published by . This book was released on 1990 with total page 92 pages. Available in PDF, EPUB and Kindle. Book excerpt: The NPS Autonomous Underwater Vehicle Simulator is a joint project between the Naval Postgraduate School's Mechanical Engineering and Computer Science Departments. In order to test mission planning and execution software, an accurate vehicle dynamic model is required. Using dynamics based upon the Navy's Swimmer Delivery Vehicle (SDV), there is a need to continually update the hydrodynamic coefficients based upon actual vehicle-in-water testing. The NPS AUV Dynamic Simulator contains a full set of submarine equations of motion and hydrodynamic coefficients. The coefficients are modifiable on-line, and a replay capability exists for further performance review. Using Monterey Bay as an underwater testing environment, there is need to be able to display expansive terrain data while maintaining the real time simulation. The Variable Terrain Resolution Algorithm incorporated into the NPS AUV Dynamic Simulator enables the entire Monterey Bay data base to be displayed in real time. Resolution adjustments are made automatically based upon the vehicle's depth level and system performance.

Book Technology and Applications of Autonomous Underwater Vehicles

Download or read book Technology and Applications of Autonomous Underwater Vehicles written by Gwyn Griffiths and published by CRC Press. This book was released on 2002-11-28 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: The oceans are a hostile environment, and gathering information on deep-sea life and the seabed is incredibly difficult. Autonomous underwater vehicles are robot submarines that are revolutionizing the way in which researchers and industry obtain data. Advances in technology have resulted in capable vehicles that have made new discoveries on how th

Book Underwater Vehicle Control and Communication Systems Based on Machine Learning Techniques

Download or read book Underwater Vehicle Control and Communication Systems Based on Machine Learning Techniques written by Tien Anh Tran and published by CRC Press. This book was released on 2023-12-04 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of intelligent transportation systems, especially autonomous underwater vehicles, has become significant in marine engineering, with an aim to enhance energy efficiency management and communication systems. This book covers different aspects of optimization of autonomous underwater vehicles and their propulsion systems via machine learning techniques. It further analyses hydrodynamic characteristics including the study of experimental investigation combined with hydrodynamic characteristics backed by MATLAB® codes and simulation study results. Features: Covers utilization of machine learning techniques with a focus on marine science and ocean engineering. Details effect of the intelligent transportation system (ITS) into the sustainable environment and ecology system. Evaluates performance of particle swarm intelligence-based optimization techniques. Reviews propulsion performance of the remote-controlled vehicles based on machine learning techniques. Includes MATLAB® examples and simulation study results. This book is aimed at graduate students and researchers in marine engineering and technology, computer science, and control system engineering.

Book Underwater Robots

Download or read book Underwater Robots written by Gianluca Antonelli and published by Springer. This book was released on 2013-11-22 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, now at the third edition, addresses the main control aspects in underwater manipulation tasks. The mathematical model with significant impact on the control strategy is discussed. The problem of controlling a 6-degrees-of-freedoms autonomous underwater vehicle is deeply investigated and a survey of fault detection/tolerant strategies for unmanned underwater vehicles is provided. Inverse kinematics, dynamic and interaction control for underwater vehicle-manipulator systems are then discussed. The code used to generate most of the numerical simulations is made available and briefly discussed.

Book Dynamic Model Development and Simulation of an Autonomous Active AUV Docking Device Using a Mechanically Actuated Mechanism to Recover AUVs to a Submerged Slowly Moving Submarine in Waves

Download or read book Dynamic Model Development and Simulation of an Autonomous Active AUV Docking Device Using a Mechanically Actuated Mechanism to Recover AUVs to a Submerged Slowly Moving Submarine in Waves written by Colin B. Gillis and published by . This book was released on 2014 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Autonomous Underwater Vehicles (AUVs) are presenting an ever expanding range of applications that enhance human capabilities and mitigate human risk. Development of a successful subsurface autonomous launch and recovery system would expand the functional use of AUVs in many fields. Defence Research and Development Canada (DRDC) is leading a collaborative project with the University of New Brunswick (UNB) to develop such a system that would recover AUVs to a slowly moving submerged submarine. This thesis provides an overview of the design, dynamic modelling, and preliminary control in simulation of an electro-mechanically actuated AUV dock concept, which operates without using hydrodynamic fluid power to provide motive force. The device is partially faired and has a R⊥R⊥P serial manipulator architecture. In short, the device is referred to as the mechanically actuated RRP serial manipulator. High speed actuation of the device is required to compensate for relative trajectory errors between the submarine and AUV during significant sea states in littoral waters. Hydrodynamic forces present in water cannot be ignored and will be modelled using the Morison Equation. Unimodal Linear Wave Theory is used to simulate AUV kinematics, establishing end effector design trajectories, as well as providing wave kinematics for hydrodynamic modelling. Alterations to the recursive Newton-Euler derivation of manipulator dynamics are explained, and results of simulations are presented. Model Predictive Control (MPC) of the mechanically actuated RRP serial manipulator is simulated using a Dynamic Matrix Control (DMC) architecture. The dynamic models are verified analytically and provide accurate evaluation without lose of generality. Dynamic modelling shows the actuator loads for the proposed device are significant. Drag is the largest contributer and indicates the device must be streamlined. The link diameter used for simulation is overly conservative and should be optimized to reduce its size, this will decrease the required actuator loads. The control simulation shows the DMC controller is a robust design for tracking, however it needs to be combined in a cascading architecture to control both position and velocity for precise control. Overall, the mechanically actuated RRP serial manipulator is a viable design but requires further modelling and development. The device becomes more promising as it is streamlined and reduced in overall length."--Pages ii-iii.