EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Stochastic Geometry and Wireless Networks

Download or read book Stochastic Geometry and Wireless Networks written by François Baccelli and published by Now Publishers Inc. This book was released on 2009 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume bears on wireless network modeling and performance analysis. The aim is to show how stochastic geometry can be used in a more or less systematic way to analyze the phenomena that arise in this context. It first focuses on medium access control mechanisms used in ad hoc networks and in cellular networks. It then discusses the use of stochastic geometry for the quantitative analysis of routing algorithms in mobile ad hoc networks. The appendix also contains a concise summary of wireless communication principles and of the network architectures considered in the two volumes.

Book Modeling and Analyzing Wireless Networks Using Stochastic Geometry

Download or read book Modeling and Analyzing Wireless Networks Using Stochastic Geometry written by Junse Lee and published by . This book was released on 2018 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past decade, stochastic geometric models, and most notably the planar Poisson point process (PPP) model, have become popular for the analysis of spectral efficiency in wireless networks, in both the D2D and the cellular contexts [1]. By modeling base station (BS) and user locations as spatial point processes, stochastic geometry has recently been recognized as a tractable and efficient analytical tool to quantify key performance metrics. This tool provides a natural way of defining and computing macroscopic properties of multiuser information theory. These properties are obtained by averaging over all node patterns found in a large random network of the Euclidean plane. For example, some key performance metrics such as signal to interference and noise ratio and data rate depend on the network geometric configurations. This tool has thus been widely adopted for analyzing the network performance and broadening network design. This thesis proposes new models to represent several new scenarios. Three main scenarios are considered: 3-D inbuilding networks, MIMO adhoc networks, and multihop communication under mmWave networks. To do so, mathematical tools such as Poisson point processes, Poisson line processes, Boolean models and Poisson bipolar models are used. Each model is 1) generative in that it has a clear physical interpretation, 2) leads to explicit analytical representations of important wireless performance metrics, and 3) highly parametric, with parameters expressing the geometric characteristic of the elements of networks. Physical interpretations from these models are quite different from previous results. The core of this thesis is focused on the effects of correlated shadowing. Shadowing is the effect that the received signal power fluctuates due to objects obstructing the propagation path. By introducing an independent shadowing term over links, it is possible to model the effect of shadow fading. Most previous papers analyzing urban networks assume that shadowing fields are independent over links. With this assumption, it is possible to derive simple closed-form expressions of important network performance metrics. However, this assumption cannot capture that shadowing fields are spatially correlated. This thesis goes beyond the independent shadowing approximation and analyzes the effects of correlated shadowing on various performance metrics

Book Stochastic Geometry Analysis of Multi Antenna Wireless Networks

Download or read book Stochastic Geometry Analysis of Multi Antenna Wireless Networks written by Xianghao Yu and published by Springer. This book was released on 2019-03-27 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a unified framework for the tractable analysis of large-scale, multi-antenna wireless networks using stochastic geometry. This mathematical analysis is essential for assessing and understanding the performance of complicated multi-antenna networks, which are one of the foundations of 5G and beyond networks to meet the ever-increasing demands for network capacity. Describing the salient properties of the framework, which makes the analysis of multi-antenna networks comparable to that of their single-antenna counterparts, the book discusses effective design approaches that do not require complex system-level simulations. It also includes various application examples with different multi-antenna network models to illustrate the framework’s effectiveness.

Book An Introduction to Cellular Network Analysis Using Stochastic Geometry

Download or read book An Introduction to Cellular Network Analysis Using Stochastic Geometry written by Jeffrey G. Andrews and published by Springer Nature. This book was released on 2023-06-30 with total page 99 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an accessible yet rigorous first reference for readers interested in learning how to model and analyze cellular network performance using stochastic geometry. In addition to the canonical downlink and uplink settings, analyses of heterogeneous cellular networks and dense cellular networks are also included. For each of these settings, the focus is on the calculation of coverage probability, which gives the complementary cumulative distribution function (ccdf) of signal-to-interference-and-noise ratio (SINR) and is the complement of the outage probability. Using this, other key performance metrics, such as the area spectral efficiency, are also derived. These metrics are especially useful in understanding the effect of densification on network performance. In order to make this a truly self-contained reference, all the required background material from stochastic geometry is introduced in a coherent and digestible manner. This Book: Provides an approachable introduction to the analysis of cellular networks and illuminates key system dependencies Features an approach based on stochastic geometry as applied to cellular networks including both downlink and uplink Focuses on the statistical distribution of signal-to-interference-and-noise ratio (SINR) and related metrics

Book Stochastic Geometry for Modeling  Analysis and Design of Future Wireless Networks

Download or read book Stochastic Geometry for Modeling Analysis and Design of Future Wireless Networks written by Jing Guo and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis focuses on the modeling, analysis and design of future wireless networks with smart devices, i.e., devices with intelligence and ability to communicate with one another with/without the control of base stations (BSs). Using stochastic geometry, we develop realistic yet tractable frameworks to model and analyze the performance of such networks, while incorporating the intelligence features of smart devices. In the first half of the thesis, we develop stochastic geometry tools to study arbitrarily shaped network regions. Current techniques in the literature assume the network regions to be infinite, while practical network regions tend to be arbitrary. Two well-known networks are considered, where devices have the ability to: (i) communicate with others without the control of BSs (i.e., ad-hoc networks), and (ii) opportunistically access spectrum (i.e., cognitive networks). First, we propose a general algorithm to derive the distribution of the distance between the reference node and a random node inside an arbitrarily shaped ad-hoc network region, which helps to compute the outage probability. We then study the impact of boundary effects and show that the outage probability in infinite regions may not be a meaningful bound for arbitrarily shaped regions. By extending the developed techniques, we further analyze the performance of underlay cognitive networks, where different secondary users (SUs) activity protocols are employed to limit the interference at a primary user. Leveraging the information exchange among SUs, we propose a cooperation-based protocol. We show that, in the short-term sensing scenario, this protocol improves the network's performance compared to the existing threshold-based protocol. In the second half of the thesis, we study two recently emerged networks, where devices have the ability to: (i) communicate directly with nearby devices under the control of BSs (i.e., device-to-device (D2D) communication), and (ii) harvest radio frequency energy (i.e., energy harvesting networks). We first analyze the intra-cell interference in a finite cellular region underlaid with D2D communication, by incorporating a mode selection scheme to reduce the interference. We derive the outage probability at the BS and a D2D receiver, and propose a spectrum reuse ratio metric to assess the overall D2D communication performance. We demonstrate that, without impairing the performance at the BS, if the path-loss exponent on cellular link is slightly lower than that on D2D link, the spectrum reuse ratio can have negligible decrease while the average number of successful D2D transmissions increases with the increasing D2D node density. This indicates that an increasing level of D2D communication is beneficial in future networks. Then we study an ad-hoc network with simultaneous wireless information and power transfer in an infinite region, where transmitters are wirelessly charged by power beacons. We formulate the total outage probability in terms of the power and channel outage probabilities. The former incorporates a power activation threshold at transmitters, which is a key practical factor that has been largely ignored in previous work. We show that, although increasing power beacon's density or transmit power is not always beneficial for channel outage probability, it improves the overall network performance.

Book Stochastic Geometry and Wireless Networks  Applications

Download or read book Stochastic Geometry and Wireless Networks Applications written by François Baccelli and published by Now Publishers Inc. This book was released on 2010-02 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume bears on wireless network modeling and performance analysis. The aim is to show how stochastic geometry can be used in a more or less systematic way to analyze the phenomena that arise in this context. It first focuses on medium access control mechanisms used in ad hoc networks and in cellular networks. It then discusses the use of stochastic geometry for the quantitative analysis of routing algorithms in mobile ad hoc networks. The appendix also contains a concise summary of wireless communication principles and of the network architectures considered in the two volumes.

Book Stochastic Geometry for Wireless Networks

Download or read book Stochastic Geometry for Wireless Networks written by Martin Haenggi and published by Cambridge University Press. This book was released on 2013 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analyse wireless network performance and improve design choices for future architectures and protocols with this rigorous introduction to stochastic geometry.

Book Modeling  Analysis  and Optimization of Random Wireless Networks

Download or read book Modeling Analysis and Optimization of Random Wireless Networks written by Hesham Mahmoud Medhat Mahmoud Elsawy and published by . This book was released on 2014 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wireless -- Stochastic -- Cellular -- Networks.

Book Stochastic Geometry Analysis of Cellular Networks

Download or read book Stochastic Geometry Analysis of Cellular Networks written by Bartłomiej Błaszczyszyn and published by Cambridge University Press. This book was released on 2018-04-19 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: Achieve faster and more efficient network design and optimization with this comprehensive guide. Some of the most prominent researchers in the field explain the very latest analytic techniques and results from stochastic geometry for modelling the signal-to-interference-plus-noise ratio (SINR) distribution in heterogeneous cellular networks. This book will help readers to understand the effects of combining different system deployment parameters on key performance indicators such as coverage and capacity, enabling the efficient allocation of simulation resources. In addition to covering results for network models based on the Poisson point process, this book presents recent results for when non-Poisson base station configurations appear Poisson, due to random propagation effects such as fading and shadowing, as well as non-Poisson models for base station configurations, with a focus on determinantal point processes and tractable approximation methods. Theoretical results are illustrated with practical Long-Term Evolution (LTE) applications and compared with real-world deployment results.

Book Modeling and Analysis of Wireless Networks with Correlation and Motion

Download or read book Modeling and Analysis of Wireless Networks with Correlation and Motion written by Chang-sik Choi and published by . This book was released on 2019 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of stochastic geometry allows the analysis of the typical performance of a wireless network. Specifically, under a stationary framework, the network performance at a typical receiver represents the network performance spatially-averaged over all receivers. This approach has been applied to the Poisson point processes whose points are independently located in space. The Poisson point process expresses a total independence type randomness in network architectures. Its tractability leads to its wide use in modeling various wireless networks, e.g., cellular networks, ad hoc networks, and vehicular networks. However, a network analysis using the Poisson point process might be inaccurate when the network components are geometrically correlated or in motion, as in heterogeneous cellular networks, or vehicular networks. For instance, macro base stations are deployed far from each other. Vehicles are located on roads, i.e., lines, and they move on the lines. As a result, the analysis of these networks can be improved by new spatial models that capture these spatial and dynamic features. In my first contribution, I derive the signal-to-interference ratio (SIR) coverage probability of a typical user in heterogeneous cellular networks where base stations are modeled by the sum of a Poisson point process and a stationary square grid. In my second contribution, I develop a stationary framework based on the sum of a Cox point process and a Poisson point process to model random cellular networks with linear base stations and linear users on straight lines. I derive the SIR coverage probability of the typical user and characterize its association. In the third contribution, I investigate the statistical properties of the Cox point process, exploring the nearest distance distribution and the convergence of the Cox-Voronoi cell. In the above three contributions, I analyze the performance of wireless networks by focusing on their correlated structures, extracting results which cannot be obtained from models based only on Poisson point processes. In my fourth contribution, I propose a new technology for harvesting Internet-of-Things (IoT) data based on mesh relaying with vehicles as sinks. I derive the network capacity and compare it to the traditional approach, which is based on static base stations. In the fifth contribution, I derive the SIR distribution of direct communication from roadside devices to vehicles. By characterizing the evolution of the network snapshots, I derive the behavior of vehicles' service coverage area and the network latency. In my sixth contribution, I propose a data harvesting technology for the ground-based data devices, based on the use of unmanned aerial vehicles (UAVs). I derive the total data transmitted from a typical device by characterizing the evolution of network geometry with respect to time. These last three contributions are built on a combination of network snapshot analysis and network evolution analysis

Book New Results on Stochastic Geometry Modeling of Cellular Networks

Download or read book New Results on Stochastic Geometry Modeling of Cellular Networks written by Wei Lu and published by . This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The increasing heterogeneity and irregular deployment of the emerging wireless networks give enormous challenges to the conventional hexagonal model for abstracting the geographical locations of wireless transmission nodes. Against this backdrop, a new network paradigm by modeling the wireless nodes as a Poisson Point Process (PPP), leveraging on the mathematical tools of stochastic geometry for tractable mathematical analysis, has been proposed with the capability of fairly accurately estimating the performance of practical cellular networks. This dissertation investigated the mathematical tractability of the PPP-based approach by proposing new mathematical methodologies, fair approximations incorporating practical channel propagation models. First, a new mathematical framework, which is referred to as an Equivalent-in-Distribution (EiD)-based approach, has been proposed for computing exact error probability of cellular networks based on random spatial networks. The proposed approach is easy to compute and is shown to be applicable to a bunch of MIMO setups where the modulation techniques and signal recovery techniques are explicitly considered. Second, the performance of relay-aided cooperative cellular networks, where the relay nodes, the base stations, and the mobile terminals are modeled according to three independent PPPs, has been analyzed by assuming flexible cell association criteria. It is shown from the mathematical framework that the performance highly depends on the path-loss exponents of one-hop and two-hop links, and the relays provide negligible gains on the performance if the system is not adequately designed. Third, the PPP modeling of cellular networks with unified signal attenuation model is generalized by taking into account the effect of line-of-sight (LOS) and non-line-of-sight (NLOS) channel propagation. A tractable yet accurate link state model has been proposed to estimate other models available in the literature. It is shown that an optimal density for the BSs deployment exists when the LOS/NLOS links are classified in saturate load cellular networks. In addition, the Monte Carlo simulation results of the real BSs deployments with empirical building blockages are compared with those with PPP distributed BSs with the proposed link state approximation at the end of this dissertation as supplementary material. In general, a good matching is observed.

Book Interference in Large Wireless Networks

Download or read book Interference in Large Wireless Networks written by Martin Haenggi and published by Now Publishers Inc. This book was released on 2009 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since interference is the main performance-limiting factor in most wireless networks, it is crucial to characterize the interference statistics. The main two determinants of the interference are the network geometry (spatial distribution of concurrently transmitting nodes) and the path loss law (signal attenuation with distance). For certain classes of node distributions, most notably Poisson point processes, and attenuation laws, closed-form results are available, for both the interference itself as well as the signal-to-interference ratios, which determine the network performance. This monograph presents an overview of these results and gives an introduction to the analytical techniques used in their derivation. The node distribution models range from lattices to homogeneous and clustered Poisson models to general motion-invariant ones. The analysis of the more general models requires the use of Palm theory, in particular conditional probability generating functionals, which are briefly introduced in the appendix.

Book On Large Cooperative Wireless Network Modeling Through a Stochastic Geometry Approach

Download or read book On Large Cooperative Wireless Network Modeling Through a Stochastic Geometry Approach written by Andres Oscar Altieri and published by . This book was released on 2014 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main goal of this work is to study cooperative aspects of large wireless networks from the perspective of stochastic geometry. This allows the consideration of important effects such as the random spatial distribution of nodes, as well as the effects of interference and interference correlation at receivers, which are not possible when a single link is considered in isolation.First, some aspects of the performance of the relay channel in the context of a large wireless network are considered. Mainly, the performance, in terms of outage probability (OP), of a single full-duplex relay channel utilizing decode-and-forward (DF) or compress-and-forward, when the interference is generated by uniform spatial deployment of nodes, modeled as a Poisson point process. The OP performance of these two protocols is compared with a point-to-point transmission and with a half-duplex DF protocol. Afterwards, the case in which more than one transmitter in the network may use a relay is considered. The effects of cooperation versus interference are studied, when the users use either full-duplex DF, or point-to-point transmissions. In a second phase, this work explores the advantages that could be obtained through out-of-band device-to-device (D2D) video file exchanges in cellular networks. These advantages are measured in terms of the fraction of requests that can be served in a time-block through D2D, thus avoiding a downlink file transfer from the base station. For this, a stochastic geometry framework is introduced, in which the user file-caching policy, user pairing strategy, and link quality and scheduling issues are considered.

Book Stochastic Geometry for Mobility Aware Performance Modeling in 6G Multi band Wireless Networks

Download or read book Stochastic Geometry for Mobility Aware Performance Modeling in 6G Multi band Wireless Networks written by Md Tanvir Hossan and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Using tools from stochastic geometry, I develop a stochastic geometry-based tractable framework to analyze the performance of a mobile user in a two-tier wireless network operating on sub-6GHz and terahertz (THz) transmission frequencies. Specifically, using an equivalence distance approach, I characterize the overall handoff (HO) rate in terms of the horizontal and vertical HO probability. In addition, I characterize novel coverage probability expressions for THz network in the presence of molecular absorption noise and highlight its significant impact on the users' performance. Specifically, I derive a novel closed-form expression for the Laplace Transform of the cumulative interference in the presence of molecular noise observed by a mobile user in a hybrid RF-THz network. Furthermore, I provide a novel approach to derive the conditional distance distributions of a typical user in a hybrid RF-THz network. Finally, using the overall HO rate and coverage probability expressions, the mobility-aware probability of coverage has been derived in a hybrid RF-THz network. The mathematical results validate the correctness of the derived expressions using Monte-Carlo simulations. The results offer insights into the adverse impact of users' mobility and molecular noise in THz transmissions on the probability of coverage of mobile users. The results demonstrate that a small increase in the intensity of THz base-station (TBSs) (about 5 times) can increase the HO probability much more compared to the case when the intensity of RF base-station (RBSs) is increased by 100 times. Furthermore, I note that high molecular absorption can be beneficial (in terms of minimizing interference) for dense deployment of TBSs and the benefits can outweigh the drawbacks of signal degradation due to molecular absorption.

Book Closed Form Analysis of Poisson Cellular Networks  a Stochastic Geometry Approach

Download or read book Closed Form Analysis of Poisson Cellular Networks a Stochastic Geometry Approach written by Alexios Aravanis and published by . This book was released on 2019 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ultra dense networks (UDNs) allow for efficient spatial reuse of the spectrum, giving rise to substantial capacity and power gains. In order to exploit those gains, tractable mathematical models need to be derived, allowing for the analysis and optimization of the network operation. In this course, stochastic geometry has emerged as a powerful tool for large-scale analysis and modeling of wireless cellular networks. In particular, the employment of stochastic geometry has been proven instrumental for the characterization of the network performance and for providing significant insights into network densification. Fundamental issues, however, remain open in order to use stochastic geometry tools for the optimization of wireless networks, with the biggest challenge being the lack of tractable closed form expressions for the derived figures of merit. To this end, the present thesis revisits stochastic geometry and provides a novel stochastic geometry framework with a twofold contribution. The first part of the thesis focuses on the derivation of simple, albeit accurate closed form approximations for the ergodic rate of Poisson cellular networks under a noise limited, an interference limited and a general case scenario. The ergodic rate constitutes the most sensible figure of merit for characterizing the system performance, but due to the inherent intractability of the available stochastic geometry frameworks, had not been formulated in closed form hitherto. To demonstrate the potential of the aforementioned tractable expressions with respect to network optimization, the present thesis proposes a flexible connectivity paradigm and employs part of the developed expressions to optimize the network connectivity. The proposed flexible connectivity paradigm exploits the downlink uplink decoupling (DUDe) configuration, which is a promising framework providing substantial capacity and outage gains in UDNs and introduces the DUDe connectivity gains into the 5G era and beyond.Subsequently, the last part of the thesis provides an analytical formulation of the probability density function (PDF) of the aggregate inter-cell interference in Poisson cellular networks. The introduced PDF is an accurate approximation of the exact PDF that could not be analytically formulated hitherto, even though it constituted a crucial tool for the analysis and optimization of cellular networks. The lack of an analytical expression for the PDF of the interference in Poisson cellular networks had imposed the use of intricate formulas, in order to derive sensible figures of merit by employing only the moment generating function (MGF). Hence, the present thesis introduces an innovative framework able to simplify the analysis of Poisson cellular networks to a great extent, while addressing fundamental issues related to network optimization and design.

Book Heterogeneous Cellular Networks

Download or read book Heterogeneous Cellular Networks written by Rose Qingyang Hu and published by John Wiley & Sons. This book was released on 2013-04-03 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: A timely publication providing coverage of radio resource management, mobility management and standardization in heterogeneous cellular networks The topic of heterogeneous cellular networks has gained momentum in industry and the research community, attracting the attention of standardization bodies such as 3GPP LTE and IEEE 802.16j, whose objectives are looking into increasing the capacity and coverage of the cellular networks. This book focuses on recent progresses, covering the related topics including scenarios of heterogeneous network deployment, interference management in the heterogeneous network deployment, carrier aggregation in a heterogeneous network, cognitive radio, cell selection/reselection and load balancing, mobility and handover management, capacity and coverage optimization for heterogeneous networks, traffic management and congestion control. This book enables readers to better understand the technical details and performance gains that are made possible by this state-of-the-art technology. It contains the information necessary for researchers and engineers wishing to build and deploy highly efficient wireless networks themselves. To enhance this practical understanding, the book is structured to systematically lead the reader through a series of case-studies of real world scenarios. Key features: Presents this new paradigm in cellular network domain: a heterogeneous network containing network nodes with different characteristics such as transmission power and RF coverage area Provides a clear approach by containing tables, illustrations, industry case studies, tutorials and examples to cover the related topics Includes new research results and state-of-the-art technological developments and implementation issues

Book Protocol Design and Analysis for Cooperative Wireless Networks

Download or read book Protocol Design and Analysis for Cooperative Wireless Networks written by Wei Song and published by Springer. This book was released on 2016-11-03 with total page 135 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the design and analysis of protocols for cooperative wireless networks, especially at the medium access control (MAC) layer and for crosslayer design between the MAC layer and the physical layer. It highlights two main points that are often neglected in other books: energy-efficiency and spatial random distribution of wireless devices. Effective methods in stochastic geometry for the design and analysis of wireless networks are also explored. After providing a comprehensive review of existing studies in the literature, the authors point out the challenges that are worth further investigation. Then, they introduce several novel solutions for cooperative wireless network protocols that reduce energy consumption and address spatial random distribution of wireless nodes. For each solution, the book offers a clear system model and problem formulation, details of the proposed cooperative schemes, comprehensive performance analysis, and extensive numerical and simulation results that validate the analysis and examine the performance under various conditions. The last section of this book reveals several potential directions for the research on cooperative wireless networks that deserve future exploration. Researchers, professionals, engineers, and consultants in wireless communication and mobile networks will find this book valuable. It is also helpful for technical staff in mobile network operations, wireless equipment manufacturers, wireless communication standardization bodies, and governmental regulation agencies.