Download or read book Model Assisted Bayesian Designs for Dose Finding and Optimization written by Ying Yuan and published by CRC Press. This book was released on 2022-11-11 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian adaptive designs provide a critical approach to improve the efficiency and success of drug development that has been embraced by the US Food and Drug Administration (FDA). This is particularly important for early phase trials as they form the basis for the development and success of subsequent phase II and III trials. The objective of this book is to describe the state-of-the-art model-assisted designs to facilitate and accelerate the use of novel adaptive designs for early phase clinical trials. Model-assisted designs possess avant-garde features where superiority meets simplicity. Model-assisted designs enjoy exceptional performance comparable to more complicated model-based adaptive designs, yet their decision rules often can be pre-tabulated and included in the protocol—making implementation as simple as conventional algorithm-based designs. An example is the Bayesian optimal interval (BOIN) design, the first dose-finding design to receive the fit-for-purpose designation from the FDA. This designation underscores the regulatory agency's support of the use of the novel adaptive design to improve drug development. Features Represents the first book to provide comprehensive coverage of model-assisted designs for various types of dose-finding and optimization clinical trials Describes the up-to-date theory and practice for model-assisted designs Presents many practical challenges, issues, and solutions arising from early-phase clinical trials Illustrates with many real trial applications Offers numerous tips and guidance on designing dose finding and optimization trials Provides step-by-step illustrations of using software to design trials Develops a companion website (www.trialdesign.org) to provide freely available, easy-to-use software to assist learning and implementing model-assisted designs Written by internationally recognized research leaders who pioneered model-assisted designs from the University of Texas MD Anderson Cancer Center, this book shows how model-assisted designs can greatly improve the efficiency and simplify the design, conduct, and optimization of early-phase dose-finding trials. It should therefore be a very useful practical reference for biostatisticians, clinicians working in clinical trials, and drug regulatory professionals, as well as graduate students of biostatistics. Novel model-assisted designs showcase the new KISS principle: Keep it simple and smart!
Download or read book Bayesian Designs for Phase I II Clinical Trials written by Ying Yuan and published by CRC Press. This book was released on 2017-12-19 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reliably optimizing a new treatment in humans is a critical first step in clinical evaluation since choosing a suboptimal dose or schedule may lead to failure in later trials. At the same time, if promising preclinical results do not translate into a real treatment advance, it is important to determine this quickly and terminate the clinical evaluation process to avoid wasting resources. Bayesian Designs for Phase I–II Clinical Trials describes how phase I–II designs can serve as a bridge or protective barrier between preclinical studies and large confirmatory clinical trials. It illustrates many of the severe drawbacks with conventional methods used for early-phase clinical trials and presents numerous Bayesian designs for human clinical trials of new experimental treatment regimes. Written by research leaders from the University of Texas MD Anderson Cancer Center, this book shows how Bayesian designs for early-phase clinical trials can explore, refine, and optimize new experimental treatments. It emphasizes the importance of basing decisions on both efficacy and toxicity.
Download or read book Design and Analysis of Pragmatic Trials written by Song Zhang and published by CRC Press. This book was released on 2023-05-16 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book begins with an introduction of pragmatic cluster randomized trials (PCTs) and reviews various pragmatic issues that need to be addressed by statisticians at the design stage. It discusses the advantages and disadvantages of each type of PCT, and provides sample size formulas, sensitivity analyses, and examples for sample size calculation. The generalized estimating equation (GEE) method will be employed to derive sample size formulas for various types of outcomes from the exponential family, including continuous, binary, and count variables. Experimental designs that have been frequently employed in PCTs will be discussed, including cluster randomized designs, matched-pair cluster randomized design, stratified cluster randomized design, stepped-wedge cluster randomized design, longitudinal cluster randomized design, and crossover cluster randomized design. It demonstrates that the GEE approach is flexible to accommodate pragmatic issues such as hierarchical correlation structures, different missing data patterns, randomly varying cluster sizes, etc. It has been reported that the GEE approach leads to under-estimated variance with limited numbers of clusters. The remedy for this limitation is investigated for the design of PCTs. This book can assist practitioners in the design of PCTs by providing a description of the advantages and disadvantages of various PCTs and sample size formulas that address various pragmatic issues, facilitating the proper implementation of PCTs to improve health care. It can also serve as a textbook for biostatistics students at the graduate level to enhance their knowledge or skill in clinical trial design. Key Features: Discuss the advantages and disadvantages of each type of PCTs, and provide sample size formulas, sensitivity analyses, and examples. Address an unmet need for guidance books on sample size calculations for PCTs; A wide variety of experimental designs adopted by PCTs are covered; The sample size solutions can be readily implemented due to the accommodation of common pragmatic issues encountered in real-world practice; Useful to both academic and industrial biostatisticians involved in clinical trial design; Can be used as a textbook for graduate students majoring in statistics and biostatistics.
Download or read book Dose Finding and Beyond in Biopharmaceutical Development written by Jingjing Ye and published by Springer Nature. This book was released on with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Design and Analysis of Quality of Life Studies in Clinical Trials written by Diane L. Fairclough and published by CRC Press. This book was released on 2010-01-07 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design Principles and Analysis Techniques for HRQoL Clinical TrialsSAS, R, and SPSS examples realistically show how to implement methods Focusing on longitudinal studies, Design and Analysis of Quality of Life Studies in Clinical Trials, Second Edition addresses design and analysis aspects in enough detail so that readers can apply statistical meth
Download or read book Statistical Analytics for Health Data Science with SAS and R written by Jeffrey Wilson and published by CRC Press. This book was released on 2023-03-27 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to compile typical fundamental-to-advanced statistical methods to be used for health data sciences. Although the book promotes applications to health and health-related data, the models in the book can be used to analyze any kind of data. The data are analyzed with the commonly used statistical software of R/SAS (with online supplementary on SPSS/Stata). The data and computing programs will be available to facilitate readers’ learning experience. There has been considerable attention to making statistical methods and analytics available to health data science researchers and students. This book brings it all together to provide a concise point-of-reference for the most commonly used statistical methods from the fundamental level to the advanced level. We envisage this book will contribute to the rapid development in health data science. We provide straightforward explanations of the collected statistical theory and models, compilations of a variety of publicly available data, and illustrations of data analytics using commonly used statistical software of SAS/R. We will have the data and computer programs available for readers to replicate and implement the new methods. The primary readers would be applied data scientists and practitioners in any field of data science, applied statistical analysts and scientists in public health, academic researchers, and graduate students in statistics and biostatistics. The secondary readers would be R&D professionals/practitioners in industry and governmental agencies. This book can be used for both teaching and applied research.
Download or read book Digital Therapeutics written by Oleksandr Sverdlov and published by CRC Press. This book was released on 2022-12-06 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the hallmarks of the 21st century medicine is the emergence of digital therapeutics (DTx)—evidence-based, clinically validated digital technologies to prevent, diagnose, treat, and manage various diseases and medical conditions. DTx solutions have been gaining interest from patients, investors, healthcare providers, health authorities, and other stakeholders because of the potential of DTx to deliver equitable, massively scalable, personalized and transformative treatments for different unmet medical needs. Digital Therapeutics: Scientific, Statistical, Clinical, and Regulatory Aspects is an unparalleled summary of the current scientific, statistical, developmental, and regulatory aspects of DTx which is poised to become the fastest growing area of the biopharmaceutical and digital medicine product development. This edited volume intends to provide a systematic exposition to digital therapeutics through 19 peer-reviewed chapters written by subject matter experts in this emerging field. This edited volume is an invaluable resource for business leaders and researchers working in public health, healthcare, digital health, information technology, and biopharmaceutical industries. It will be also useful for regulatory scientists involved in the review of DTx products, and for faculty and students involved in an interdisciplinary research on digital health and digital medicine. Key Features: Provides the taxonomy of the concepts and a navigation tool for the field of DTx. Covers important strategic aspects of the DTx industry, thereby helping investors, developers, and regulators gain a better appreciation of the potential value of DTx. Expounds on many existing and emerging state-of-the art scientific and technological tools, as well as data privacy, ethical and regulatory considerations for DTx product development. Presents several case studies of successful development of some of the most remarkable DTx products. Provides some perspectives and forward-looking statements on the future of digital medicine.
Download or read book Controlled Epidemiological Studies written by Marie Reilly and published by CRC Press. This book was released on 2023-05-26 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers classic epidemiological designs that use a reference/control group, including case-control, case-cohort, nested case-control and variations of these designs, such as stratified and two-stage designs. It presents a unified view of these sampling designs as representations of an underlying cohort or target population of interest. This enables various extended designs to be introduced and analysed with a similar approach: extreme sampling on the outcome (extreme case-control design) or on the exposure (exposure-enriched, exposure-density, countermatched), designs that re-use prior controls and augmentation sampling designs. Further extensions exploit aggregate data for efficient cluster sampling, accommodate time-varying exposures and combine matched and unmatched controls. Self-controlled designs, including case-crossover, self-controlled case series and exposure-crossover, are also presented. The test-negative design for vaccine studies and the use of negative controls for bias assessment are introduced and discussed. This book is intended for graduate students in biostatistics, epidemiology and related disciplines, or for health researchers and data analysts interested in extending their knowledge of study design and data analysis skills. This book Bridges the gap between epidemiology and the more mathematically oriented biostatistics books. Assembles the wealth of epidemiological knowledge about observational study designs that is scattered over several decades of scientific publications. Illustrates the performance of methods in real research applications. Provides guidelines for implementation in standard software packages (Stata, R). Includes numerous exercises, covering simple mathematical proofs, consideration of proposed or published designs, and practical data analysis.
Download or read book Value of Information for Healthcare Decision Making written by Anna Heath and published by CRC Press. This book was released on 2024-02-08 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: Value of Information for Healthcare Decision-Making introduces the concept of Value of Information (VOI) use in health policy decision-making to determine the sensitivity of decisions to assumptions, and to prioritise and design future research. These methods, and their use in cost-effectiveness analysis, are increasingly acknowledged by health technology assessment authorities as vital. Key Features: Provides a comprehensive overview of VOI Simplifies VOI Showcases state-of-the-art techniques for computing VOI Includes R statistical software package Provides results when using VOI methods Uses realistic decision model to illustrate key concepts The primary audience for this book is health economic modellers and researchers, in industry, government, or academia, who wish to perform VOI analysis in health economic evaluations. It is relevant for postgraduate researchers and students in health economics or medical statistics who are required to learn the principles of VOI or undertake VOI analyses in their projects. The overall goal is to improve the understanding of these methods and make them easier to use.
Download or read book Statistical Methods in Health Disparity Research written by J. Sunil Rao and published by CRC Press. This book was released on 2023-07-11 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: A health disparity refers to a higher burden of illness, injury, disability, or mortality experienced by one group relative to others attributable to multiple factors including socioeconomic status, environmental factors, insufficient access to health care, individual risk factors, and behaviors and inequalities in education. These disparities may be due to many factors including age, income, and race. Statistical Methods in Health Disparity Research will focus on their estimation, ranging from classical approaches including the quantification of a disparity, to more formal modeling, to modern approaches involving more flexible computational approaches. Features: Presents an overview of methods and applications of health disparity estimation First book to synthesize research in this field in a unified statistical framework Covers classical approaches, and builds to more modern computational techniques Includes many worked examples and case studies using real data Discusses available software for estimation The book is designed primarily for researchers and graduate students in biostatistics, data science, and computer science. It will also be useful to many quantitative modelers in genetics, biology, sociology, and epidemiology.
Download or read book Case Studies in Innovative Clinical Trials written by Kristine Broglio and published by CRC Press. This book was released on 2023-11-27 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: Drug development is a strictly regulated area. As such, marketing approval of a new drug depends heavily, if not exclusively, on evidence generated from clinical trials. Drug development has seen tremendous innovation in science and technology that has revolutionized the treatment of some diseases. And yet, the statistical design and practical conduct of the clinical trials used to test new therapeutics for safety and efficacy have changed very little over the decades. Our approach to clinical trials is steeped in convention and tradition. The large, fixed, randomized controlled trial methods that have been the gold standard are well understood and expected by many trial stakeholders. However, this approach is not well suited to all aspects of modern drug development and the current competitive landscape. We now see new therapies that target a small fraction of the patient population, rare diseases with high unmet medical needs, and pediatric populations that must wait for years for new drug approvals from the time that therapies are approved in adults. Large randomized clinical trials are at best inefficient and at worst completely infeasible in many modern clinical settings. Advances in technology and data infrastructure call for innovations in clinical trial design. Despite advances in statistical methods, the availability of information, and computing power, the actual experience with innovative design in clinical trials across industry and academia is limited. This book will be an important showcase of the potential for these innovative designs in modern drug development and will be an important resource to guide those who wish to undertake them for themselves. This book is ideal for professionals in the pharmaceutical industry and regulatory agencies, but it will also be useful to academic researchers, faculty members, and graduate students in statistics, biostatistics, public health, and epidemiology due to its focus on innovation. Key Features: Is written by pharmaceutical industry experts, academic researchers, and regulatory reviewers; this is the first book providing a comprehensive set of case studies related to statistical methodology, implementation, regulatory considerations, and communication of complex innovative trial design Has a broad appeal to a multitude of readers across academia, industry, and regulatory agencies Each contribution is a practical case study that can speak to the benefits of an innovative approach but also balance that with the real-life challenges encountered A complete understanding of what is actually being done in modern clinical trials will broaden the reader’s capabilities and provide examples to first mimic and then customize and expand upon when exploring these ideas on their own
Download or read book ROC Analysis for Classification and Prediction in Practice written by Christos Nakas and published by CRC Press. This book was released on 2023-05-15 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a unified and up-to-date introduction to ROC methodologies, covering both diagnosis (classification) and prediction. The emphasis is on the conceptual underpinning of ROC analysis and the practical implementation in diverse scientific fields. A plethora of examples accompany the methodologic discussion using standard statistical software such as R and STATA. The book arrives after two decades of intensive growth in both the methods and the applications of ROC analysis and presents a new synthesis. The authors provide a contemporary, integrated exposition of ROC methodology for both classification and prediction and include material on multiple-class ROC. This book avoids lengthy technical exposition and provides code and datasets in each chapter. Receiver Operating Characteristic Analysis for Classification and Prediction is intended for researchers and graduate students, but will also be useful for those that use ROC analysis in diverse disciplines such as diagnostic medicine, bioinformatics, medical physics, and perception psychology.
Download or read book Quantitative Methods for Precision Medicine written by Rongling Wu and published by CRC Press. This book was released on 2022-12-26 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern medicine is undergoing a paradigm shift from a "one-size-fits-all" strategy to a more precise patient-customized therapy and medication plan. While the success of precision medicine relies on the level of pharmacogenomic knowledge, dissecting the genetic mechanisms of drug response in a sufficient detail requires powerful computational tools. Quantitative Methods for Precision Medicine: Pharmacogenomics in Action presents the advanced statistical methods for mapping pharmacogenetic control by integrating pharmacokinetic and pharmacodynamic principles of drug-body interactions. Beyond traditional reductionist-based statistical genetic approaches, statistical formulization in this book synthesizes elements of multiple disciplines to infer, visualize, and track how pharmacogenes interact together as an intricate but well-coordinated system to mediate patient-specific drug response. Features: Functional and systems mapping models to characterize the genetic architecture of multiple medication processes Statistical methods for analyzing informative missing data in pharmacogenetic association studies Functional graph theory of inferring genetic interaction networks from association data Leveraging the concept of epistasis to capture its bidirectional, signed and weighted properties Modeling gene-induced cell-cell crosstalk and its impact on drug response A graph model of drug-drug interactions in combination therapies Critical methodological issues to improve pharmacogenomic research as the cornerstone of precision medicine This book is suitable for graduate students and researchers in the fields of biology, medicine, bioinformatics and drug design and delivery who are interested in statistical and computational modelling of biological processes and systems. It may also serve as a major reference for applied mathematicians, computer scientists, and statisticians who attempt to develop algorithmic tools for genetic mapping, systems pharmacogenomics and systems biology. It can be used as both a textbook and research reference. Professionals in pharmaceutical sectors who design drugs and clinical doctors who deliver drugs will also find it useful.
Download or read book Drug Development for Rare Diseases written by Bo Yang and published by CRC Press. This book was released on 2023-01-10 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: A disease is defined as rare if the prevalence is fewer than 200,000 in the United States. It is estimated that there are more than 7,000 rare diseases, which collectively affect 30 million Americans or 10% of the US population. This diverse and complex disease area poses challenges for patients, caregivers, regulators, drug developers, and other stakeholders. This book is proposed to give an overview of the common issues facing rare disease drug developers, summarize challenges specific to clinical development in small populations, discuss drug development strategies in the evolving regulatory environment, explain generation and utilization of different data and evidence inside and beyond clinical trials, and use recent examples to demonstrate these challenges and the development strategies that respond to the challenges. Key Features: • Rare disease. • Drug development. • Innovative clinical trial design. • Regulatory approval. • Real-world evidence.
Download or read book Bayesian Adaptive Methods for Clinical Trials written by Scott M. Berry and published by CRC Press. This book was released on 2010-07-19 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Already popular in the analysis of medical device trials, adaptive Bayesian designs are increasingly being used in drug development for a wide variety of diseases and conditions, from Alzheimer's disease and multiple sclerosis to obesity, diabetes, hepatitis C, and HIV. Written by leading pioneers of Bayesian clinical trial designs, Bayesian Adapti
Download or read book Dose Finding by the Continual Reassessment Method written by Ying Kuen Cheung and published by CRC Press. This book was released on 2011-03-29 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: As clinicians begin to realize the important role of dose-finding in the drug development process, there is an increasing openness to "novel" methods proposed in the past two decades. In particular, the Continual Reassessment Method (CRM) and its variations have drawn much attention in the medical community, though it has yet to become a commonplace tool. To overcome the status quo in phase I clinical trials, statisticians must be able to design trials using the CRM in a timely and reproducible manner. A self-contained theoretical framework of the CRM for researchers and graduate students who set out to learn and do research in the CRM and dose-finding methods in general, Dose Finding by the Continual Reassessment Method features: Real clinical trial examples that illustrate the methods and techniques throughout the book Detailed calibration techniques that enable biostatisticians to design a CRM in timely manner Limitations of the CRM are outlined to aid in correct use of method This book supplies practical, efficient dose-finding methods based on cutting edge statistical research. More than just a cookbook, it provides full, unified coverage of the CRM in addition to step-by-step guidelines to automation and parameterization of the methods used on a regular basis. A detailed exposition of the calibration of the CRM for applied statisticians working with dose-finding in phase I trials, the book focuses on the R package ‘dfcrm’ for the CRM and its major variants. The author recognizes clinicians’ skepticism of model-based designs, and addresses their concerns that the time, professional, and computational resources necessary for accurate model-based designs can be major bottlenecks to the widespread use of appropriate dose-finding methods in phase I practice. The theoretically- and empirically-based methods in Dose Finding by the Continual Reassessment Method will lessen the statistician’s burden and encourage the continuing development and implementation of model-based dose-finding methods.
Download or read book Biomarker Analysis in Clinical Trials with R written by Nusrat Rabbee and published by CRC Press. This book was released on 2020-03-11 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: The world is awash in data. This volume of data will continue to increase. In the pharmaceutical industry, much of this data explosion has happened around biomarker data. Great statisticians are needed to derive understanding from these data. This book will guide you as you begin the journey into communicating, understanding and synthesizing biomarker data. -From the Foreword, Jared Christensen, Vice President, Biostatistics Early Clinical Development, Pfizer, Inc. Biomarker Analysis in Clinical Trials with R offers practical guidance to statisticians in the pharmaceutical industry on how to incorporate biomarker data analysis in clinical trial studies. The book discusses the appropriate statistical methods for evaluating pharmacodynamic, predictive and surrogate biomarkers for delivering increased value in the drug development process. The topic of combining multiple biomarkers to predict drug response using machine learning is covered. Featuring copious reproducible code and examples in R, the book helps students, researchers and biostatisticians get started in tackling the hard problems of designing and analyzing trials with biomarkers. Features: Analysis of pharmacodynamic biomarkers for lending evidence target modulation. Design and analysis of trials with a predictive biomarker. Framework for analyzing surrogate biomarkers. Methods for combining multiple biomarkers to predict treatment response. Offers a biomarker statistical analysis plan. R code, data and models are given for each part: including regression models for survival and longitudinal data, as well as statistical learning models, such as graphical models and penalized regression models.