EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Milling Simulation

    Book Details:
  • Author : Weihong Zhang
  • Publisher : John Wiley & Sons
  • Release : 2016-06-15
  • ISBN : 1119262917
  • Pages : 272 pages

Download or read book Milling Simulation written by Weihong Zhang and published by John Wiley & Sons. This book was released on 2016-06-15 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reliable scheduling in cutting conditions is very important in machining processes, and this requires thorough understanding of the physical behaviors of the machining process, which cannot be achieved without understanding the underlying mechanism of the processes. The book describes the mechanics and dynamics together with the clamping principles in milling processes, and can be used as a guideline for graduate students and research engineers who wish to be effective manufacture engineers and researchers. Many books have focused on common principles, which are suitable for general machining processes, e.g., milling, turning and drilling, etc. This book specifically aims at exploring the mechanics and dynamics of milling processes. Original theoretical derivations and new observations on static cutting force models, dynamic stability models and clamping principles associated with milling processes are classified and detailed. The book is indented as a text for graduate students and machining engineers who wish to intensively learn milling mechanism and machine tool vibration.

Book Machining Simulation Using SOLIDWORKS CAM 2019

Download or read book Machining Simulation Using SOLIDWORKS CAM 2019 written by Kuang-Hua Chang and published by SDC Publications. This book was released on 2019-06 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book will teach you all the important concepts and steps used to conduct machining simulations using SOLIDWORKS CAM. SOLIDWORKS CAM is a parametric, feature-based machining simulation software offered as an add-in to SOLIDWORKS. It integrates design and manufacturing in one application, connecting design and manufacturing teams through a common software tool that facilitates product design using 3D solid models. By carrying out machining simulation, the machining process can be defined and verified early in the product design stage. Some, if not all, of the less desirable design features of part manufacturing can be detected and addressed while the product design is still being finalized. In addition, machining-related problems can be detected and eliminated before mounting a stock on a CNC machine, and manufacturing cost can be estimated using the machining time estimated in the machining simulation. This book is intentionally kept simple. It’s written to help you become familiar with the practical applications of conducting machining simulations in SOLIDWORKS CAM. This book provides you with the basic concepts and steps needed to use the software, as well as a discussion of the G-codes generated. After completing this book, you should have a clear understanding of how to use SOLIDWORKS CAM for machining simulations and should be able to apply this knowledge to carry out machining assignments on your own product designs. In order to provide you with a more comprehensive understanding of machining simulations, the book discusses NC (numerical control) part programming and verification, as well as introduces applications that involve bringing the G-code post processed by SOLIDWORKS CAM to a HAAS CNC mill and lathe to physically cut parts. This book points out important, practical factors when transitioning from virtual to physical machining. Since the machining capabilities offered in the 2019 version of SOLIDWORKS CAM are somewhat limited, this book introduces third-party CAM modules that are seamlessly integrated into SOLIDWORKS, including CAMWorks, HSMWorks, and Mastercam for SOLIDWORKS. This book covers basic concepts, frequently used commands and options required for you to advance from a novice to an intermediate level SOLIDWORKS CAM user. Basic concepts and commands introduced include extracting machinable features (such as 2.5 axis features), selecting a machine and cutting tools, defining machining parameters (such as feedrate, spindle speed, depth of cut, and so on), generating and simulating toolpaths, and post processing CL data to output G-code for support of physical machining. The concepts and commands are introduced in a tutorial style presentation using simple but realistic examples. Both milling and turning operations are included. One of the unique features of this book is the incorporation of the CL data verification by reviewing the G-code generated from the toolpaths. This helps you understand how the G-code is generated by using the respective post processors, which is an important step and an excellent way to confirm that the toolpaths and G-code generated are accurate and useful. Who is this book for? This book should serve well for self-learners. A self-learner should have basic physics and mathematics background, preferably a bachelor or associate degree in science or engineering. We assume that you are familiar with basic manufacturing processes, especially milling and turning. And certainly, we expect that you are familiar with SOLIDWORKS part and assembly modes. A self-learner should be able to complete the fourteen lessons of this book in about fifty hours. This book also serves well for class instruction. Most likely, it will be used as a supplemental reference for courses like CNC Machining, Design and Manufacturing, Computer-Aided Manufacturing, or Computer-Integrated Manufacturing. This book should cover five to six weeks of class instruction, depending on the course arrangement and the technical background of the students.

Book Simulation and Tool Path Optimization for the Hexapod Milling Machine

Download or read book Simulation and Tool Path Optimization for the Hexapod Milling Machine written by Shangjian Du and published by Vulkan-Verlag GmbH. This book was released on 2005 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: To fully exploit the advantages of multi-axis machining in a modern production environment, new types of parallel kinematic machines (PKM) and new processing technologies such as those using high speed cutting (HSC) are needed. However, the machining accuracy and hence the process reliability of PKM are still not satisfactory when using today's CAM systems due to the complexity of the dynamic behavior of machine axes. A hybrid simulation method for optimizing tool paths that overcomes the limits of today's CAM systems is presented in this work. Two major independent simulations were performed, to examine the influences on the quality of the final product. It is shown that the kinematics, the dynamics and the stiffness are important factors affecting the accuracy of PKM. These factors can be taken into account, to obtain an accurate modeling of PKM-behavior.

Book Machining Simulation Using SOLIDWORKS CAM 2018

Download or read book Machining Simulation Using SOLIDWORKS CAM 2018 written by Kuang-Hua Chang and published by SDC Publications. This book was released on with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book will teach you all the important concepts and steps used to conduct machining simulations using SOLIDWORKS CAM. SOLIDWORKS CAM is a parametric, feature-based machining simulation software offered as an add-in to SOLIDWORKS. It integrates design and manufacturing in one application, connecting design and manufacturing teams through a common software tool that facilitates product design using 3D solid models. By carrying out machining simulation, the machining process can be defined and verified early in the product design stage. Some, if not all, of the less desirable design features of part manufacturing can be detected and addressed while the product design is still being finalized. In addition, machining-related problems can be detected and eliminated before mounting a stock on a CNC machine, and manufacturing cost can be estimated using the machining time estimated in the machining simulation. This book is intentionally kept simple. It’s written to help you become familiar with the practical applications of conducting machining simulations in SOLIDWORKS CAM. This book provides you with the basic concepts and steps needed to use the software, as well as a discussion of the G-codes generated. After completing this book, you should have a clear understanding of how to use SOLIDWORKS CAM for machining simulations and should be able to apply this knowledge to carry out machining assignments on your own product designs. In order to provide you with a more comprehensive understanding of machining simulations, the book discusses NC (numerical control) part programming and verification, as well as introduces applications that involve bringing the G-code post processed by SOLIDWORKS CAM to a HAAS CNC mill and lathe to physically cut parts. This book points out important, practical factors when transitioning from virtual to physical machining. Since the machining capabilities offered in the 2018 version of SOLIDWORKS CAM are somewhat limited, this book introduces third-party CAM modules that are seamlessly integrated into SOLIDWORKS, including CAMWorks, HSMWorks, and Mastercam for SOLIDWORKS. This book covers basic concepts, frequently used commands and options required for you to advance from a novice to an intermediate level SOLIDWORKS CAM user. Basic concepts and commands introduced include extracting machinable features (such as 2.5 axis features), selecting a machine and cutting tools, defining machining parameters (such as feedrate, spindle speed, depth of cut, and so on), generating and simulating toolpaths, and post processing CL data to output G-code for support of physical machining. The concepts and commands are introduced in a tutorial style presentation using simple but realistic examples. Both milling and turning operations are included. One of the unique features of this book is the incorporation of the CL data verification by reviewing the G-code generated from the toolpaths. This helps you understand how the G-code is generated by using the respective post processors, which is an important step and an excellent way to confirm that the toolpaths and G-code generated are accurate and useful. Who is this book for? This book should serve well for self-learners. A self-learner should have basic physics and mathematics background, preferably a bachelor or associate degree in science or engineering. We assume that you are familiar with basic manufacturing processes, especially milling and turning. And certainly, we expect that you are familiar with SOLIDWORKS part and assembly modes. A self-learner should be able to complete the fourteen lessons of this book in about fifty hours. This book also serves well for class instruction. Most likely, it will be used as a supplemental reference for courses like CNC Machining, Design and Manufacturing, Computer-Aided Manufacturing, or Computer-Integrated Manufacturing. This book should cover five to six weeks of class instruction, depending on the course arrangement and the technical background of the students.

Book Virtual Machining Using CAMWorks 2019

Download or read book Virtual Machining Using CAMWorks 2019 written by Kuang-Hua Chang and published by SDC Publications. This book was released on 2019-02-04 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is written to help you learn the core concepts and steps used to conduct virtual machining using CAMWorks. CAMWorks is a virtual machining tool designed to increase your productivity and efficiency by simulating machining operations on a computer before creating a physical product. CAMWorks is embedded in SOLIDWORKS as a fully integrated module. CAMWorks provides excellent capabilities for machining simulations in a virtual environment. Capabilities in CAMWorks allow you to select CNC machines and tools, extract or create machinable features, define machining operations, and simulate and visualize machining toolpaths. In addition, the machining time estimated in CAMWorks provides an important piece of information for estimating product manufacturing cost without physically manufacturing the product. The book covers the basic concepts and frequently used commands and options you’ll need to know to advance from a novice to an intermediate level CAMWorks user. Basic concepts and commands introduced include extracting machinable features (such as 2.5 axis features), selecting machine and tools, defining machining parameters (such as feedrate), generating and simulating toolpaths, and post processing CL data to output G-codes for support of CNC machining. The concepts and commands are introduced in a tutorial style presentation using simple but realistic examples. Both milling and turning operations are included. One of the unique features of this book is the incorporation of the CL (cutter location) data verification by reviewing the G-codes generated from the toolpaths. This helps you understand how the G-codes are generated by using the respective post processors, which is an important step and an ultimate way to confirm that the toolpaths and G-codes generated are accurate and useful. This book is intentionally kept simple. It primarily serves the purpose of helping you become familiar with CAMWorks in conducting virtual machining for practical applications. This is not a reference manual of CAMWorks. You may not find everything you need in this book for learning CAMWorks. But this book provides you with basic concepts and steps in using the software, as well as discussions on the G-codes generated. After going over this book, you will develop a clear understanding in using CAMWorks for virtual machining simulations, and should be able to apply the knowledge and skills acquired to carry out machining assignments and bring machining consideration into product design in general. Who this book is for This book should serve well for self-learners. A self-learner should have a basic physics and mathematics background. We assume that you are familiar with basic manufacturing processes, especially milling and turning. In addition, we assume you are familiar with G-codes. A self-learner should be able to complete the ten lessons of this book in about forty hours. This book also serves well for class instructions. Most likely, it will be used as a supplemental reference for courses like CNC Machining, Design and Manufacturing, Computer-Aided Manufacturing, or Computer-Integrated Manufacturing. This book should cover four to five weeks of class instructions, depending on the course arrangement and the technical background of the students. What is virtual machining? Virtual machining is the use of simulation-based technology, in particular, computer-aided manufacturing (CAM) software, to aid engineers in defining, simulating, and visualizing machining operations for parts or assembly in a computer, or virtual, environment. By using virtual machining, the machining process can be defined and verified early in the product design stage. Some, if not all, of the less desirable design features in the context of part manufacturing, such as deep pockets, holes or fillets of different sizes, or cutting on multiple sides, can be detected and addressed while the product design is still being finalized. In addition, machining-related problems, such as undesirable surface finish, surface gouging, and tool or tool holder colliding with stock or fixtures, can be identified and eliminated before mounting a stock on a CNC machine at shop floor. In addition, manufacturing cost, which constitutes a significant portion of the product cost, can be estimated using the machining time estimated in the virtual machining simulation. Virtual machining allows engineers to conduct machining process planning, generate machining toolpaths, visualize and simulate machining operations, and estimate machining time. Moreover, the toolpaths generated can be converted into NC codes to machine functional parts as well as die or mold for part production. In most cases, the toolpath is generated in a so-called CL data format and then converted to G-codes using respective post processors.

Book Virtual Machining Using CAMWorks 2018

Download or read book Virtual Machining Using CAMWorks 2018 written by Kuang-Hua Chang and published by SDC Publications. This book was released on 2018-04 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is written to help you learn the core concepts and steps used to conduct virtual machining using CAMWorks. CAMWorks is a virtual machining tool designed to increase your productivity and efficiency by simulating machining operations on a computer before creating a physical product. CAMWorks is embedded in SOLIDWORKS as a fully integrated module. CAMWorks provides excellent capabilities for machining simulations in a virtual environment. Capabilities in CAMWorks allow you to select CNC machines and tools, extract or create machinable features, define machining operations, and simulate and visualize machining toolpaths. In addition, the machining time estimated in CAMWorks provides an important piece of information for estimating product manufacturing cost without physically manufacturing the product. The book covers the basic concepts and frequently used commands and options you’ll need to know to advance from a novice to an intermediate level CAMWorks user. Basic concept and commands introduced include extracting machinable features (such as 2.5 axis features), selecting machine and tools, defining machining parameters (such as feedrate), generating and simulating toolpaths, and post processing CL data to output G-codes for support of CNC machining. The concept and commands are introduced in a tutorial style presentation using simple but realistic examples. Both milling and turning operations are included. One of the unique features of this book is the incorporation of the CL (cutter location) data verification by reviewing the G-codes generated from the toolpaths. This helps you understand how the G-codes are generated by using the respective post processors, which is an important step and an ultimate way to confirm that the toolpaths and G-codes generated are accurate and useful. This book is intentionally kept simple. It primarily serves the purpose of helping you become familiar with CAMWorks in conducting virtual machining for practical applications. This is not a reference manual of CAMWorks. You may not find everything you need in this book for learning CAMWorks. But this book provides you with basic concepts and steps in using the software, as well as discussions on the G-codes generated. After going over this book, you will develop a clear understanding in using CAMWorks for virtual machining simulations, and should be able to apply the knowledge and skills acquired to carry out machining assignments and bring machining consideration into product design in general. Who this book is for This book should serve well for self-learners. A self-learner should have a basic physics and mathematics background. We assume that you are familiar with basic manufacturing processes, especially milling and turning. In addition, we assume you are familiar with G-codes. A self-learner should be able to complete the ten lessons of this book in about forty hours. This book also serves well for class instructions. Most likely, it will be used as a supplemental reference for courses like CNC Machining, Design and Manufacturing, Computer-Aided Manufacturing, or Computer-Integrated Manufacturing. This book should cover four to five weeks of class instructions, depending on the course arrangement and the technical background of the students. What is virtual machining? Virtual machining is the use of simulation-based technology, in particular, computer-aided manufacturing (CAM) software, to aid engineers in defining, simulating, and visualizing machining operations for parts or assembly in a computer, or virtual, environment. By using virtual machining, the machining process can be defined and verified early in the product design stage. Some, if not all, of the less desirable design features in the context of part manufacturing, such as deep pockets, holes or fillets of different sizes, or cutting on multiple sides, can be detected and addressed while the product design is still being finalized. In addition, machining-related problems, such as undesirable surface finish, surface gouging, and tool or tool holder colliding with stock or fixtures, can be identified and eliminated before mounting a stock on a CNC machine at shop floor. In addition, manufacturing cost, which constitutes a significant portion of the product cost, can be estimated using the machining time estimated in the virtual machining simulation. Virtual machining allows engineers to conduct machining process planning, generate machining toolpaths, visualize and simulate machining operations, and estimate machining time. Moreover, the toolpaths generated can be converted into NC codes to machine functional parts as well as die or mold for part production. In most cases, the toolpath is generated in a so-called CL data format and then converted to G-codes using respective post processors.

Book Transactions on Engineering Technologies

Download or read book Transactions on Engineering Technologies written by Gi-Chul Yang and published by Springer. This book was released on 2015-05-07 with total page 760 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains fifty-one revised and extended research articles written by prominent researchers participating in the international conference on Advances in Engineering Technologies and Physical Science (London, UK, 2-4 July, 2014), under the World Congress on Engineering 2014 (WCE 2014). Topics covered include mechanical engineering, bioengineering, internet engineering, wireless networks, image engineering, manufacturing engineering and industrial applications. The book offers an overview of the tremendous advances made recently in engineering technologies and the physical sciences and their applications and also serves as an excellent reference for researchers and graduate students working in these fields.

Book High Speed Machining

Download or read book High Speed Machining written by Kapil Gupta and published by Academic Press. This book was released on 2020-01-31 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: High-Speed Machining covers every aspect of this important subject, from the basic mechanisms of the technology, right through to possible avenues for future research. This book will help readers choose the best method for their particular task, how to set up their equipment to reduce chatter and wear, and how to use simulation tools to model high-speed machining processes. The different applications of each technology are discussed throughout, as are the latest findings by leading researchers in this field. For any researcher looking to understand this topic, any manufacturer looking to improve performance, or any manager looking to upgrade their plant, this is the most comprehensive and authoritative guide available. Summarizes important R&D from around the world, focusing on emerging topics like intelligent machining Explains the latest best practice for the optimization of high-speed machining processes for greater energy efficiency and machining precision Provides practical advice on the testing and monitoring of HSM machines, drawing on practices from leading companies

Book Vibration Assisted Machining

Download or read book Vibration Assisted Machining written by Lu Zheng and published by John Wiley & Sons. This book was released on 2021-02-16 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first book to comprehensively address the theory, kinematic modelling, numerical simulation and applications of vibration assisted machining Vibration Assisted Machining: Theory, Modelling and Applications covers all key aspects of vibration assisted machining, including cutting kinematics and dynamics, the effect of workpiece materials and wear of cutting tools. It also addresses practical applications for these techniques. Case studies provide detailed guidance on the design, modeling and testing of VAM systems. Experimental machining methods are also included, alongside considerations of state-of-the-art research developments on cutting force modeling and surface texture generation. Advances in computational modelling, surface metrology and manufacturing science over the past few decades have led to tremendous benefits for industry. This is the first comprehensive book dedicated to design, modelling, simulation and integration of vibration assisted machining system and processes, enabling wider industrial application of the technology. This book enables engineering students and professionals in manufacturing to understand and implement the latest vibration assisted machining techniques. Highlights include: Comprehensive coverage of the theory, kinematics modelling, numerical simulation and applications of vibration assisted machining (VAM) Case studies with detailed guidance on design, modelling and testing of VAM systems, as well as experimental machining methods Discussion of state-of-the-art research developments on cutting force modelling and surface texture generation Coverage of the history of VAM, its current applications and future directions for the technology Vibration Assisted Machining: Theory, Modelling and Applications provides engineering students, researchers, manufacturing engineers, production supervisors, tooling engineers, planning and application engineers and machine tool designers with the fundamentals of vibration assisted machining, along with methodologies for developing and implementing the technology to solve practical industry problems.

Book Thermal Effects in Complex Machining Processes

Download or read book Thermal Effects in Complex Machining Processes written by D Biermann and published by Springer. This book was released on 2017-08-31 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: This contributed volume contains the research results of the priority programme (PP) 1480 “Modelling, Simulation and Compensation of Thermal Effects for Complex Machining Processes", funded by the German Research Society (DFG). The topical focus of this programme is the simulation-based prediction and compensation of thermally induced workpiece deviations and subsurface damage effects. The approach to the topic is genuinely interdisciplinary, covering all relevant machining operations such as turning, milling, drilling and grinding. The target audience primarily comprises research experts and practitioners in the field of production engineering, but the book may also be beneficial for graduate students.

Book Chatter and Machine Tools

Download or read book Chatter and Machine Tools written by Brian Stone and published by Springer. This book was released on 2014-06-13 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focussing on occurrences of unstable vibrations, or Chatter, in machine tools, this book gives important insights into how to eliminate chatter with associated improvements in product quality, surface finish and tool wear. Covering a wide range of machining processes, including turning, drilling, milling and grinding, the author uses his research expertise and practical knowledge of vibration problems to provide solutions supported by experimental evidence of their effectiveness. In addition, this book contains links to supplementary animation programs that help readers to visualise the ideas detailed in the text. Advancing knowledge in chatter avoidance and suggesting areas for new innovations, Chatter and Machine Tools serves as a handbook for those desiring to achieve significant reductions in noise, longer tool and grinding wheel life and improved product finish.

Book Intelligent Fixtures for the Manufacturing of Low Rigidity Components

Download or read book Intelligent Fixtures for the Manufacturing of Low Rigidity Components written by Hans Christian Moehring and published by Springer. This book was released on 2017-08-28 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book summarizes the results of the European research project "Intelligent fixtures for the manufacturing of low rigidity components" (INTEFIX). The structure of the book follows the sub-projects which are dedicated to case studies within the scenarios "vibrations", "deformations" and "positioning". The INTEFIX project deals with the development and analysis of several exemplary types of intelligent, sensor and actuator integrated fixtures for the clamping of sensitive workpieces in cutting machine tools. Thus, the book gives a representative overview about this innovative field of technology. The demands of the case studies are described and the technological approaches and solutions are introduced. Furthermore, innovative methods for the design and optimization of intelligent fixtures are presented.

Book Discrete Event Simulations

Download or read book Discrete Event Simulations written by Eldin Wee Chuan Lim and published by BoD – Books on Demand. This book was released on 2012-09-06 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Discrete Event Simulation (DES) method has received widespread attention and acceptance by both researchers and practitioners in recent years. The range of application of DES spans across many different disciplines and research fields. In research, further development and advancements of the basic DES algorithm continue to be sought while various hybrid methods derived by combining DES with other simulation techniques continue to be developed. This book presents state-of-the-art contributions on fundamental development of the DES method, novel integration of the method with other modeling techniques as well as applications towards simulating and analyzing the performances of various types of systems. This book will be of interest to undergraduate and graduate students, researchers as well as professionals who are actively engaged in DES related work.

Book Computational Design and Digital Manufacturing

Download or read book Computational Design and Digital Manufacturing written by Panagiotis Kyratsis and published by Springer Nature. This book was released on 2023-02-02 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the latest advances in computational and parametric design engineering, as well as digital tools related to manufacturing. It covers design and manufacturing process such as CAD-based design/manufacturing, parametric design, algorithmic design and process automation, and several digital tools and applications.

Book Computer Graphics

    Book Details:
  • Author : Nobuhiko Mukai
  • Publisher : BoD – Books on Demand
  • Release : 2012-03-30
  • ISBN : 9535104551
  • Pages : 270 pages

Download or read book Computer Graphics written by Nobuhiko Mukai and published by BoD – Books on Demand. This book was released on 2012-03-30 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer graphics is now used in various fields; for industrial, educational, medical and entertainment purposes. The aim of computer graphics is to visualize real objects and imaginary or other abstract items. In order to visualize various things, many technologies are necessary and they are mainly divided into two types in computer graphics: modeling and rendering technologies. This book covers the most advanced technologies for both types. It also includes some visualization techniques and applications for motion blur, virtual agents and historical textiles. This book provides useful insights for researchers in computer graphics.

Book Advanced Modeling and Optimization of Manufacturing Processes

Download or read book Advanced Modeling and Optimization of Manufacturing Processes written by R. Venkata Rao and published by Springer Science & Business Media. This book was released on 2010-12-01 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Modeling and Optimization of Manufacturing Processes presents a comprehensive review of the latest international research and development trends in the modeling and optimization of manufacturing processes, with a focus on machining. It uses examples of various manufacturing processes to demonstrate advanced modeling and optimization techniques. Both basic and advanced concepts are presented for various manufacturing processes, mathematical models, traditional and non-traditional optimization techniques, and real case studies. The results of the application of the proposed methods are also covered and the book highlights the most useful modeling and optimization strategies for achieving best process performance. In addition to covering the advanced modeling, optimization and environmental aspects of machining processes, Advanced Modeling and Optimization of Manufacturing Processes also covers the latest technological advances, including rapid prototyping and tooling, micromachining, and nano-finishing. Advanced Modeling and Optimization of Manufacturing Processes is written for designers and manufacturing engineers who are responsible for the technical aspects of product realization, as it presents new models and optimization techniques to make their work easier, more efficient, and more effective. It is also a useful text for practitioners, researchers, and advanced students in mechanical, industrial, and manufacturing engineering.

Book Advances in Cereals Processing Technologies

Download or read book Advances in Cereals Processing Technologies written by Gopal Kumar Sharma and published by CRC Press. This book was released on 2021-12-22 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present book presents its reader with comprehensive knowledge related to cereals processing. It is imperative to have sound knowledge of food laws and regulations with an Indian perspective as these play a pivotal role in commercializing food products as well as fresh produce, which are aptly covered in this book. It includes recent trends in technology of cereals based products, technological updates in legumes and pulses based convenience/processed foods, various aspects of evolution of bakery and confectionery technology and technological evaluation of milling. Since age's process of fermentation was employed for preserving the cereals based food by using general and specified micro flora and micro fauna, the science and technology involved is well explained in the chapter titled 'Fermented Food Based on Cereal and Pulses.' The most important quality attributes related to cereals processing are rheological and thermal changes which occur when extrinsic factors such as moisture and temperature are ebbed and flowed. This subject was sensibly covered under 'Rheological and Thermal Changes Occurring During Processing.' Sugarcane and the sugar industry have the largest contribution to the industrial development. Various unit operations and technology involved are explained as recent updates in sugar, honey, jaggery and salt processing. Shelf life stability of the products with respect to various chemical parameters attributed to the oxidative changes in processed foods is also aptly covered. Note: T&F does not sell or distribute the hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka. This title is co-published with NIPA.