EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Micro pocket Fission Detectors  Development of Advanced  Real time In core  Neutron flux Sensors

Download or read book Micro pocket Fission Detectors Development of Advanced Real time In core Neutron flux Sensors written by Michael Anthony Reichenberger and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Advancements in nuclear reactor core modeling and computational capability have encouraged further development of in-core neutron sensors. Measurement of the neutron-flux distribution within the reactor core provides a more complete understanding of the operating conditions in the reactor than typical ex-core sensors. Micro-Pocket Fission Detectors (MPFDs) have been developed and tested previously but have been limited to single-node operation and have utilized highly specialized designs. The development of a widely deployable, multi-node MPFD assembly will enhance nuclear research capabilities. In-core neutron flux measurements include many challenges because of the harsh environment within the reactor core. Common methods of in-core neutron measurement are also limited by geometry and other physical constraints. MPFDs are designed to be small and robust while offering a real-time, spatial measurement of neutron flux. Improvements to the MPFD design were developed based on shortcomings of prior research in which many of the theoretical considerations for MPFDs were examined. Fabrication techniques were developed for the preparation of MPFD components and electrodeposition of fissile material. Numerous arrays of MPFDs were constructed for test deployments at the Kansas State University TRIGA Mk. II research nuclear reactor, University of Wisconsin Nuclear Reactor, Transient REActor Test facility at the Idaho National Laboratory (INL), and Advanced Test Reactor at INL. Preliminary testing of a single MPFD sensor at KSU yielded a linear response to reactor power between 10 kWth and 750 kWth and followed both positive and negative reactivity insertions in real-time. A $1.50 reactor pulse was monitored from the Intra-Reflector Irradiation System, located in reflector region of the KSU TRIGA Mk. II core with 1-ms time resolution. Improved multi-node MPFD arrays were then designed, fabricated, and deployed in flux ports between fuel rods and within an iron-wire flux port which was inserted into the central thimble of the KSU TRIGA Mk. II research nuclear reactor. Work continues to develop MPFDs for deployment at research reactors at INL and elsewhere. Results from the MPFD measurements will be useful for future validation of computational modeling and as part of advanced nuclear fuel development efforts.

Book Deployment of a Three dimensional Array of Micro pocket Fission Detector Triads  MPFD3  for Real time  In core Neutron Flux Measurements in the Kansas State University TRIGA Mark II Nuclear Reactor

Download or read book Deployment of a Three dimensional Array of Micro pocket Fission Detector Triads MPFD3 for Real time In core Neutron Flux Measurements in the Kansas State University TRIGA Mark II Nuclear Reactor written by Martin Francis Ohmes and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A Micro-Pocket Fission Detector (MPFD) is a miniaturized type of fission chamber developed for use inside a nuclear reactor. Their unique design allows them to be located between or even inside fuel pins while being built from materials which give them an operational lifetime comparable to or exceeding the life of the fuel. While other types of neutron detectors have been made for use inside a nuclear reactor, the MPFD is the first neutron detector which can survive sustained use inside a nuclear reactor while providing a real-time measurement of the neutron flux. This dissertation covers the deployment of MPFDs as a large three-dimensional array inside the Kansas State University TRIGA Mark-II Nuclear Reactor for real-time neutron flux measurements. This entails advancements in the design, construction, and packaging of the Micro-Pocket Fission Detector Triads with incorporated Thermocouple, or MPFD3-T. Specialized electronics and software also had to be designed and built in order to make a functional system capable of collecting real-time data from up to 60 MPFD3-Ts, or 180 individual MPFDs and 60 thermocouples. Design of the electronics required the development of detailed simulations and analysis for determining the theoretical response of the detectors and determination of their size. The results of this research shows that MPFDs can operate for extended times inside a nuclear reactor and can be utilized toward the use as distributed neutron detector arrays for advanced reactor control systems and power mapping. These functions are critical for continued gains in efficiency of nuclear power reactors while also improving safety through relatively inexpensive redundancy.

Book NEET Enhanced Micro Pocket Fission Detector for High Temperature Reactors   FY15 Status Report

Download or read book NEET Enhanced Micro Pocket Fission Detector for High Temperature Reactors FY15 Status Report written by and published by . This book was released on 2015 with total page 50 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new project, that is a collaboration between the Idaho National Laboratory (INL), the Kansas State University (KSU), and the French Atomic Energy Agency, Commissariat à l'Énergie Atomique et aux Energies Alternatives, (CEA), has been initiated by the Nuclear Energy Enabling Technologies (NEET) Advanced Sensors and Instrumentation (ASI) program for developing and testing High Temperature Micro-Pocket Fission Detectors (HT MPFD), which are compact fission chambers capable of simultaneously measuring thermal neutron flux, fast neutron flux and temperature within a single package for temperatures up to 800 °C. The MPFD technology utilizes a small, multi-purpose, robust, in-core parallel plate fission chamber and thermocouple. As discussed within this report, the small size, variable sensitivity, and increased accuracy of the MPFD technology represent a revolutionary improvement over current methods used to support irradiations in US Material Test Reactors (MTRs). Previous research conducted through NEET ASI1-3 has shown that the MPFD technology could be made robust and was successfully tested in a reactor core. This new project will further the MPFD technology for higher temperature regimes and other reactor applications by developing a HT MPFD suitable for temperatures up to 800 °C. This report summarizes the research progress for year one of this three year project. Highlights from research accomplishments include: A joint collaboration was initiated between INL, KSU, and CEA. Note that CEA is participating at their own expense because of interest in this unique new sensor. An updated HT MPFD design was developed. New high temperature-compatible materials for HT MPFD construction were procured. Construction methods to support the new design were evaluated at INL. Laboratory evaluations of HT MPFD were initiated. Electrical contact and fissile material plating has been performed at KSU. Updated detector electronics are undergoing evaluations at KSU. A project meeting was held at KSU to discuss the roles and responsibilities between INL and KSU for development of the HT MPFDs. Provide input to various irradiation programs for installation of the MPFD technology in irradiation tests. As documented in this report, FY15 funding has allowed the project to meet year one planned accomplishments to develop a HT MPFD that offers US MTR users enhanced capabilities for real-time measurement of flux and temperature with a single detector. In addition, the accomplishments of this project have attracted funding from other Department of Energy Office of Nuclear Energy (DOE-NE) programs for additional applications. The work in those programs will build on current activities completed in this NEETASI HT MPFD project, but the MPFD will be specifically tailored to meet their program needs.

Book Design and Testing of Long lifetime Active Sensor Arrays for In core Multi dimensional Flux Measurements

Download or read book Design and Testing of Long lifetime Active Sensor Arrays for In core Multi dimensional Flux Measurements written by Tyrel Daniel Frank George and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Fission chambers are a common type of detector used to determine the neutron flux and power of a nuclear reactor. Due to the limited space and high neutron flux in a reactor core, it is difficult to perform real-time flux measurements with present-day in-core instrumentation. Micro-pocket fission detectors, or MPFDs, are relatively small in size and have low neutron sensitivity while retaining a large neutron to gamma ray discrimination ratio, thereby, allowing them to be used as active neutron flux monitors inside a nuclear reactor core. The micro-pocket fission chamber allows for multiple detectors to be inserted into a flux port or other available openings within the nuclear reactor core. Any material used to construct the MPFD must be rugged and capable of sustaining radiation damage for long periods of time. Each calibrated MPFD provides measurements of the flux for a discrete location. The size of these detectors allows for a spatial map of the flux to be developed, enabling real-time analysis of core burnup, power peaking, and rod shadowing. Small diameter thermocouples can be included with the array to also measure the temperature at each location. The following document details the research and development of MPFDs for long term use in nuclear power reactors. Previous MPFD designs were improved, miniaturized, and optimized for long term operations in reactor test ports designed for passive measurements of fluence using iron wires. Detector chambers with dimensions of 0.08 in x 0.06 in x 0.04 in were attached to a common cathode and individual anodes to construct an array of the MPFDs. Each array was tested at the Kansas State University TRIGA Mark II nuclear reactor to demonstrate functionality. The linear response in reactor power was measured. These arrays have also demonstrated reactor power tracking by following reactivity changes in steady state operations and reactor pulsing events. Stability testing showed consistent operation at 100 kW for several hours. The MPFDs have been demonstrated to be a viable technology for in-core measurements.

Book NEET Micro Pocket Fission Detector   Final Project Report

Download or read book NEET Micro Pocket Fission Detector Final Project Report written by and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A collaboration between the Idaho National Laboratory (INL), the Kansas State University (KSU), and the French Alternative Energies and Atomic Energy Commission, Commissariat à l'Énergie Atomique et aux Energies Alternatives, (CEA), is funded by the Nuclear Energy Enabling Technologies (NEET) program to develop and test Micro-Pocket Fission Detectors (MPFDs), which are compact fission chambers capable of simultaneously measuring thermal neutron flux, fast neutron flux and temperature within a single package. When deployed, these sensors will significantly advance flux detection capabilities for irradiation tests in US Material Test Reactors (MTRs). Ultimately, evaluations may lead to a more compact, more accurate, and longer lifetime flux sensor for critical mock-ups, and high performance reactors, allowing several Department of Energy Office of Nuclear Energy (DOE-NE) programs to obtain higher accuracy/higher resolution data from irradiation tests of candidate new fuels and materials. Specifically, deployment of MPFDs will address several challenges faced in irradiations performed at MTRs: Current fission chamber technologies do not offer the ability to measure fast flux, thermal flux and temperature within a single compact probe; MPFDs offer this option. MPFD construction is very different than current fission chamber construction; the use of high temperature materials allow MPFDs to be specifically tailored to survive harsh conditions encountered in-core of high performance MTRs. The higher accuracy, high fidelity data available from the compact MPFD will significantly enhance efforts to validate new high-fidelity reactor physics codes and new multi-scale, multi-physics codes. MPFDs can be built with variable sensitivities to survive the lifetime of an experiment or fuel assembly in some MTRs, allowing for more efficient and cost effective power monitoring. The small size of the MPFDs allows multiple sensors to be deployed, offering the potential to accurately measure the flux and temperature profiles in the reactor. This report summarizes the status at the end of year two of this three year project. As documented in this report, all planned accomplishments for developing this unique new, compact, multipurpose sensor have been completed.

Book NEET Micro Pocket Fission Detector    FY 2012 Status Report

Download or read book NEET Micro Pocket Fission Detector FY 2012 Status Report written by and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A research program has been initiated by the NEET program for developing and testing compact miniature fission chambers capable of simultaneously measuring thermal neutron flux, fast neutron flux and temperature within a single package. When implemented, these sensors will significantly advance flux detection capabilities for irradiation tests in US Materials Test Reactors (MTRs). Ultimately, evaluations may lead to a more compact, more accurate, and longer lifetime flux sensor for critical mock-ups, high performance reactors and commercial nuclear power plants. Deployment of Micro-Pocket Fission Detectors (MPFDs) in US DOE-NE program irradiation tests will address several challenges: Current fission chamber technologies do not offer the ability to measure fast flux, thermal flux and temperature within a single compact probe, MPFDs offer this option. MPFD construction is very different then current fission chamber construction; the use of high temperature materials allow MPFDs to be specifically tailored to survive harsh conditions in typical high performance MTR irradiation tests. New high-fidelity reactor physics codes will need a small, accurate, multipurpose in-core sensor to validate the codes without perturbing the validation experiment; MPFDs fill this requirement. MPFDs can be built with variable sensitivities to survive the lifetime of an experiment or fuel assembly in some MTRs; allowing for more efficient and cost effective power monitoring. The small size of the MPFDs allows multiple sensors to be simultaneously deployed; obtaining data required to visualize the reactor flux and temperature profiles. This report summarizes the research progress for year 1 of this 3 year project. An updated design of the MPFD has been developed, materials and tools to support the new design have been procured, construction methods to support the new design have been initiated at INL's HTTL and KSU's SMART Laboratory, plating methods are being updated at KSU, new detector electronics have been designed, built and tested at KSU. In addition, a project meeting was held at KSU and a detector evaluation plan has been initiated between INL and KSU. Once NEET program evaluations are completed, the final MPFD will be deployed in MTR irradiations, enabling DOE-NE programs evaluating the performance of candidate new fuels and materials to better characterize irradiation test conditions.

Book Development of a Solid State Neutron Detector for SNAP 10A

Download or read book Development of a Solid State Neutron Detector for SNAP 10A written by A. Chesavage and published by . This book was released on 1966 with total page 46 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Initial Back to Back Fission Chamber Testing in ATRC

Download or read book Initial Back to Back Fission Chamber Testing in ATRC written by and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Development and testing of in-pile, real-time neutron sensors for use in Materials Test Reactor experiments is an ongoing project at Idaho National Laboratory. The Advanced Test Reactor National Scientific User Facility has sponsored a series of projects to evaluate neutron detector options in the Advanced Test Reactor Critical Facility (ATRC). Special hardware was designed and fabricated to enable testing of the detectors in the ATRC. Initial testing of Self-Powered Neutron Detectors and miniature fission chambers produced promising results. Follow-on testing required more experiment hardware to be developed. The follow-on testing used a Back-to-Back fission chamber with the intent to provide calibration data, and a means of measuring spectral indices. As indicated within this document, this is the first time in decades that BTB fission chambers have been used in INL facilities. Results from these fission chamber measurements provide a baseline reference for future measurements with Back-to-Back fission chambers.

Book Modeling and Simulation of Neutron Detectors for the Transient Reactor Test Facility

Download or read book Modeling and Simulation of Neutron Detectors for the Transient Reactor Test Facility written by Wenkai Fu and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The Transient REActor Test (TREAT) facility was restarted and will be used to test accident-tolerant fuels to improve nuclear reactor safety. In this work, alternative neutron detectors for use in core and with the hodoscope at the TREAT facility were modeled and simulated using different computational tools to understand the underlying physics. The Hornyak button scintillation detector used in the original TREAT hodoscope to detect fast neutrons and its variants were evaluated using Geant4 to simulate the coupled nuclear and optical physics. The Hornyak-button model predicted an intrinsic efficiency of 0.35% for mono-directional fission neutrons and strong gamma-induced Cherenkov noise, which agree relatively well with the reported experimental observations. The proposed variants use silicon photomultipliers to reduce Cherenkov noise and have optimized layered or homogenized scintillation volumes. The layered and homogenized variants with 5-cm length were predicted to achieve neutron-detection efficiencies of 3.3% and 1.3%, respectively, at a signal-to-noise ratio of 100. Another candidate devices for the hodoscope are the actinide and hydrogenous microstructured semiconductor neutron detectors (MSNDs) evaluated using Geant4 and MCNP. With a sufficient rejection of the gamma noises, the U235 -filled and the hydrogenous MSNDs were predicted to yield neutron-detection efficiencies of 1.2% and 2.5%, respectively, at the length of 2 cm. The micro-pocket fission detectors (MPFDs) were developed to detect in-core neutrons, and the electron collection process in such devices was evaluated using Garfield++-based computational routine. The high-performance Garfield++ application was developed using the built-in, optimized element-search techniques and a hydrid MPI and OpenMP parallelization scheme. The preliminary results indicated that the averaged deposited energy per fission fragment was 7.15 MeV, and the induced current occured within 400 ns.

Book Detectors for Reactor In core Measurement of Fast Neutron Flux

Download or read book Detectors for Reactor In core Measurement of Fast Neutron Flux written by Donald P. Brown and published by . This book was released on 1973 with total page 45 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Recent Advances in Fast response Miniature Neutron Flux Monitors

Download or read book Recent Advances in Fast response Miniature Neutron Flux Monitors written by and published by . This book was released on 1970 with total page 12 pages. Available in PDF, EPUB and Kindle. Book excerpt: A fast response miniature neutron detector has been developed at the Los Alamos Scientific Laboratory (LASL), to measure temperature-time history of fissile materials under intense neutron irradiation. The fissile-sensing element of the fission couple neutron detector is approximately 0.030 in. in diameter. The detector sensitivity for thermal neutrons is approximately 109 n/cm2 -°C. To determine any limitations in response time, fission couples were placed 3 m from a nuclear device in an underground nuclear weapons test at the Nevada Test Site. The detector accurately followed the change in neutron population (alpha measurement) as the device exploded. This rapid change in neutron population had an e-folding time of 20 nsec. A number of experiments were performed in various reactors so that such a detector could be developed. These experiments were conducted in a particular sequence and were aimed at investigating the characteristics, possible uses, and limitations of the fission couple. Some experimental results are discussed. The significance of the results obtained with fission couples suggests numerous applications in neutron diagnostics and reactor controls. The most obvious application for this instrument would be mapping of the neutron flux in and around a reactor. Other possible applications are also discussed. The miniature size and fast response of a fission couple combine to offer unique advantages as a new tool in reactor diagnostics and control. (auth).

Book Near Core and In Core Neutron Radiation Monitors for Real Time Neutron Flux Monitoring and Reactor Power Level Measurements

Download or read book Near Core and In Core Neutron Radiation Monitors for Real Time Neutron Flux Monitoring and Reactor Power Level Measurements written by Paul Nelson and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: MPFDs are a new class of detectors that utilize properties from existing radiation detector designs. A majority of these characteristics come from fission chamber designs. These include radiation hardness, gamma-ray background insensitivity, and large signal output.

Book Prototype Demonstration of Gamma  Blind Tensioned Metastable Fluid Neutron Multiplicity Alpha Detector   Real Time Methods for Advanced Fuel Cycle Applications

Download or read book Prototype Demonstration of Gamma Blind Tensioned Metastable Fluid Neutron Multiplicity Alpha Detector Real Time Methods for Advanced Fuel Cycle Applications written by and published by . This book was released on 2016 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt: The content of this report summarizes a multi-year effort to develop prototype detection equipment using the Tensioned Metastable Fluid Detector (TMFD) technology developed by Taleyarkhan [1]. The context of this development effort was to create new methods for evaluating and developing advanced methods for safeguarding nuclear materials along with instrumentation in various stages of the fuel cycle, especially in material balance areas (MBAs) and during reprocessing of used nuclear fuel. One of the challenges related to the implementation of any type of MBA and/or reprocessing technology (e.g., PUREX or UREX) is the real-time quantification and control of the transuranic (TRU) isotopes as they move through the process. Monitoring of higher actinides from their neutron emission (including multiplicity) and alpha signatures during transit in MBAs and in aqueous separations is a critical research area. By providing on-line real-time materials accountability, diversion of the materials becomes much more difficult. The Tensioned Metastable Fluid Detector (TMFD) is a transformational technology that is uniquely capable of both alpha and neutron spectroscopy while being "blind" to the intense gamma field that typically accompanies used fuel - simultaneously with the ability to provide multiplicity information as well [1-3]. The TMFD technology was proven (lab-scale) as part of a 2008 NERI-C program [1-7]. The bulk of this report describes the advancements and demonstrations made in TMFD technology. One final point to present before turning to the TMFD demonstrations is the context for discussing real-time monitoring of SNM. It is useful to review the spectrum of isotopes generated within nuclear fuel during reactor operations. Used nuclear fuel (UNF) from a light water reactor (LWR) contains fission products as well as TRU elements formed through neutron absorption/decay chains. The majority of the fission products are gamma and beta emitters and they represent the more significant hazards from a radiation protection standpoint. However, alpha and neutron emitting uranium and TRU elements represent the more significant safeguards and security concerns. Table 1.1 presents a representative PWR inventory of the uranium and actinide isotopes present in a used fuel assembly. The uranium and actinide isotopes (chiefly the Pu, Am and Cm elements) are all emitters of alpha particles and some of them release significant quantities of neutrons through spontaneous fissions.

Book High dose Neutron Detector Development

Download or read book High dose Neutron Detector Development written by and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of advanced sustainable nuclear fuel cycles relying on used nuclear fuel is one of the key programs pursued by the DOE Office of Nuclear Energy to minimize waste generation, limit proliferation risk and maximize energy production using nuclear energy. Safeguarding of advanced nuclear fuel cycles is essential to ensure the safety and security of the nuclear material. Current non-destructive assay (NDA) systems typically employ fission chambers or 3He-based tubes for the measurement of used fuel. Fission chambers are capable of withstanding the high gamma-ray backgrounds; however, they provide very low detection efficiency on the order of 0.01%. To benefit from the additional information provided by correlated neutron counting [1] higher detection efficiencies are required. 3He-based designs allow for higher detection efficiencies; however, at the expense of slow signal rise time characteristics and higher sensitivity to the gamma-ray backgrounds. It is therefore desirable to evaluate and develop technologies with potential to exceed performance parameters of standard fission chamber-based or 3He-based detection systems currently used in the NDA instrumentation.

Book Advanced Microstructured Semiconductor Neutron Detectors

Download or read book Advanced Microstructured Semiconductor Neutron Detectors written by Steven Lawrence Bellinger and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The microstructured semiconductor neutron detector (MSND) was investigated and previous designs were improved and optimized. In the present work, fabrication techniques have been refined and improved to produce three-dimensional microstructured semiconductor neutron detectors with reduced leakage current, reduced capacitance, highly anisotropic deep etched trenches, and increased signal-to-noise ratios. As a result of these improvements, new MSND detection systems function with better gamma-ray discrimination and are easier to fabricate than previous designs. In addition to the microstructured diode fabrication improvement, a superior batch processing backfill-method for 6LiF neutron reactive material, resulting in a nearly-solid backfill, was developed. This method incorporates a LiF nano-sizing process and a centrifugal batch process for backfilling the nanoparticle LiF material. To better transition the MSND detector to commercialization, the fabrication process was studied and enhanced to better facilitate low cost and batch process MSND production. The research and development of the MSND technology described in this work includes fabrication of variant microstructured diode designs, which have been simulated through MSND physics models to predict performance and neutron detection efficiency, and testing the operational performance of these designs in regards to neutron detection efficiency, gamma-ray rejection, and silicon fabrication methodology. The highest thermal-neutron detection efficiency reported to date for a solid-state semiconductor detector is presented in this work. MSNDs show excellent neutron to gamma-ray (n/[gamma]) rejection ratios, which are on the order of 106, without significant loss in thermal-neutron detection efficiency. Individually, the MSND is intrinsically highly sensitive to thermal neutrons, but not extrinsically sensitive because of their small size. To improve upon this, individual MSNDs were tiled together into a 6x6-element array on a single silicon chip. Individual elements of the array were tested for thermal-neutron detection efficiency and for the n/[gamma] reject ratio. Overall, because of the inadequacies and costs of other neutron detection systems, the MSND is the premier technology for many neutron detection applications.

Book Nuclear Radiation Nanosensors and Nanosensory Systems

Download or read book Nuclear Radiation Nanosensors and Nanosensory Systems written by Paata J. Kervalishvili and published by Springer. This book was released on 2016-04-12 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of selected review papers focuses on topics such as digital radiation sensors and nanosensory systems for nanotechnology applications and integrated X-ray/PET/CT detectors; nanophosphors and nanocrystal quantum dots as X-ray radiation sensors; the luminescence efficiency of CdSe/ZnS QD and UV-induced luminescence efficiency distribution; investigations devoted to the quantum and multi-parametrical nature of disasters and the modeling thereof using quantum search and quantum query algorithms; sum-frequency-generation, IR fourier and raman spectroscopy methods; as well as investigations into the vibrational modes of viruses and other pathogenic microorganisms aimed at creating optical biosensory systems. This is followed by a review of radiation resistant semiconductor sensors and magnetic measurement instrumentation for magnetic diagnostics of high-tech fission and fusion set-ups and accelerators; the evaluation of the use of neutron-radiation, 10B-enriched semiconducting materials as thin-film, highly reliable, highly sensitive and fast-acting robust solid-state electronic neutron-detectors; and the irradiation of n-Si crystals with protons, which converts the “metallic” inclusions to “dielectric” ones in isochronous annealing, therefore leading to opto/micro/nanoelectronic devices, including nuclear radiation nanosensors. The book concludes with a comparative study of the nitride and sulfide chemisorbed layers; a chemical model that describes the formation of such layers in hydrazine-sulfide and water sodium sulfide solution; and recent developments in the microwave-enhanced processing and microwave-assisted synthesis of nanoparticles and nanomaterials using Mn(OH)2.