EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Metaheuristic Optimization via Memory and Evolution

Download or read book Metaheuristic Optimization via Memory and Evolution written by Cesar Rego and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tabu Search (TS) and, more recently, Scatter Search (SS) have proved highly effective in solving a wide range of optimization problems, and have had a variety of applications in industry, science, and government. The goal of Metaheuristic Optimization via Memory and Evolution: Tabu Search and Scatter Search is to report original research on algorithms and applications of tabu search, scatter search or both, as well as variations and extensions having "adaptive memory programming" as a primary focus. Individual chapters identify useful new implementations or new ways to integrate and apply the principles of TS and SS, or that prove new theoretical results, or describe the successful application of these methods to real world problems.

Book Advances in Metaheuristics for Hard Optimization

Download or read book Advances in Metaheuristics for Hard Optimization written by Patrick Siarry and published by Springer Science & Business Media. This book was released on 2007-12-06 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many advances have recently been made in metaheuristic methods, from theory to applications. The editors, both leading experts in this field, have assembled a team of researchers to contribute 21 chapters organized into parts on simulated annealing, tabu search, ant colony algorithms, general purpose studies of evolutionary algorithms, applications of evolutionary algorithms, and metaheuristics.

Book Modeling  Analysis  and Applications in Metaheuristic Computing  Advancements and Trends

Download or read book Modeling Analysis and Applications in Metaheuristic Computing Advancements and Trends written by Yin, Peng-Yeng and published by IGI Global. This book was released on 2012-03-31 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book is a collection of the latest developments, models, and applications within the transdisciplinary fields related to metaheuristic computing, providing readers with insight into a wide range of topics such as genetic algorithms, differential evolution, and ant colony optimization"--Provided by publisher.

Book Handbook of Metaheuristic Algorithms

Download or read book Handbook of Metaheuristic Algorithms written by Chun-Wei Tsai and published by Elsevier. This book was released on 2023-05-30 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Metaheuristic Algorithms: From Fundamental Theories to Advanced Applications provides a brief introduction to metaheuristic algorithms from the ground up, including basic ideas and advanced solutions. Although readers may be able to find source code for some metaheuristic algorithms on the Internet, the coding styles and explanations are generally quite different, and thus requiring expanded knowledge between theory and implementation. This book can also help students and researchers construct an integrated perspective of metaheuristic and unsupervised algorithms for artificial intelligence research in computer science and applied engineering domains. Metaheuristic algorithms can be considered the epitome of unsupervised learning algorithms for the optimization of engineering and artificial intelligence problems, including simulated annealing (SA), tabu search (TS), genetic algorithm (GA), ant colony optimization (ACO), particle swarm optimization (PSO), differential evolution (DE), and others. Distinct from most supervised learning algorithms that need labeled data to learn and construct determination models, metaheuristic algorithms inherit characteristics of unsupervised learning algorithms used for solving complex engineering optimization problems without labeled data, just like self-learning, to find solutions to complex problems. - Presents a unified framework for metaheuristics and describes well-known algorithms and their variants - Introduces fundamentals and advanced topics for solving engineering optimization problems, e.g., scheduling problems, sensors deployment problems, and clustering problems - Includes source code based on the unified framework for metaheuristics used as examples to show how TS, SA, GA, ACO, PSO, DE, parallel metaheuristic algorithm, hybrid metaheuristic, local search, and other advanced technologies are realized in programming languages such as C++ and Python

Book Handbook of Metaheuristics

Download or read book Handbook of Metaheuristics written by Michel Gendreau and published by Springer. This book was released on 2018-09-20 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: The third edition of this handbook is designed to provide a broad coverage of the concepts, implementations, and applications in metaheuristics. The book’s chapters serve as stand-alone presentations giving both the necessary underpinnings as well as practical guides for implementation. The nature of metaheuristics invites an analyst to modify basic methods in response to problem characteristics, past experiences, and personal preferences, and the chapters in this handbook are designed to facilitate this process as well. This new edition has been fully revised and features new chapters on swarm intelligence and automated design of metaheuristics from flexible algorithm frameworks. The authors who have contributed to this volume represent leading figures from the metaheuristic community and are responsible for pioneering contributions to the fields they write about. Their collective work has significantly enriched the field of optimization in general and combinatorial optimization in particular.Metaheuristics are solution methods that orchestrate an interaction between local improvement procedures and higher level strategies to create a process capable of escaping from local optima and performing a robust search of a solution space. In addition, many new and exciting developments and extensions have been observed in the last few years. Hybrids of metaheuristics with other optimization techniques, like branch-and-bound, mathematical programming or constraint programming are also increasingly popular. On the front of applications, metaheuristics are now used to find high-quality solutions to an ever-growing number of complex, ill-defined real-world problems, in particular combinatorial ones. This handbook should continue to be a great reference for researchers, graduate students, as well as practitioners interested in metaheuristics.

Book Scatter Search

    Book Details:
  • Author : Manuel Laguna
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 146150337X
  • Pages : 302 pages

Download or read book Scatter Search written by Manuel Laguna and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book Scatter Search by Manuel Laguna and Rafael Martí represents a long-awaited "missing link" in the literature of evolutionary methods. Scatter Search (SS)-together with its generalized form called Path Relinking-constitutes the only evolutionary approach that embraces a collection of principles from Tabu Search (TS), an approach popularly regarded to be divorced from evolutionary procedures. The TS perspective, which is responsible for introducing adaptive memory strategies into the metaheuristic literature (at purposeful level beyond simple inheritance mechanisms), may at first seem to be at odds with population-based approaches. Yet this perspective equips SS with a remarkably effective foundation for solving a wide range of practical problems. The successes documented by Scatter Search come not so much from the adoption of adaptive memory in the range of ways proposed in Tabu Search (except where, as often happens, SS is advantageously coupled with TS), but from the use of strategic ideas initially proposed for exploiting adaptive memory, which blend harmoniously with the structure of Scatter Search. From a historical perspective, the dedicated use of heuristic strategies both to guide the process of combining solutions and to enhance the quality of offspring has been heralded as a key innovation in evolutionary methods, giving rise to what are sometimes called "hybrid" (or "memetic") evolutionary procedures. The underlying processes have been introduced into the mainstream of evolutionary methods (such as genetic algorithms, for example) by a series of gradual steps beginning in the late 1980s.

Book Machine Learning and Metaheuristic Computation

Download or read book Machine Learning and Metaheuristic Computation written by Erik Cuevas and published by John Wiley & Sons. This book was released on 2024-12-24 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn to bridge the gap between machine learning and metaheuristic methods to solve problems in optimization approaches Few areas of technology have greater potential to revolutionize the globe than artificial intelligence. Two key areas of artificial intelligence, machine learning and metaheuristic computation, have an enormous range of individual and combined applications in computer science and technology. To date, these two complementary paradigms have not always been treated together, despite the potential of a combined approach which maximizes the utility and minimizes the drawbacks of both. Machine Learning and Metaheuristic Computation offers an introduction to both of these approaches and their joint applications. Both a reference text and a course, it is built around the popular Python programming language to maximize utility. It guides the reader gradually from an initial understanding of these crucial methods to an advanced understanding of cutting-edge artificial intelligence tools. The text also provides: Treatment suitable for readers with only basic mathematical training Detailed discussion of topics including dimensionality reduction, clustering methods, differential evolution, and more A rigorous but accessible vision of machine learning algorithms and the most popular approaches of metaheuristic optimization Machine Learning and Metaheuristic Computation is ideal for students, researchers, and professionals looking to combine these vital methods to solve problems in optimization approaches.

Book Hybrid Metaheuristics

    Book Details:
  • Author : Christian Blum
  • Publisher : Springer Science & Business Media
  • Release : 2008-04-11
  • ISBN : 354078294X
  • Pages : 294 pages

Download or read book Hybrid Metaheuristics written by Christian Blum and published by Springer Science & Business Media. This book was released on 2008-04-11 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization problems are of great importance across a broad range of fields. They can be tackled, for example, by approximate algorithms such as metaheuristics. This book is intended both to provide an overview of hybrid metaheuristics to novices of the field, and to provide researchers from the field with a collection of some of the most interesting recent developments. The authors involved in this book are among the top researchers in their domain.

Book Encyclopedia of Optimization

Download or read book Encyclopedia of Optimization written by Christodoulos A. Floudas and published by Springer Science & Business Media. This book was released on 2008-09-04 with total page 4646 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of the Encyclopedia of Optimization is to introduce the reader to a complete set of topics that show the spectrum of research, the richness of ideas, and the breadth of applications that has come from this field. The second edition builds on the success of the former edition with more than 150 completely new entries, designed to ensure that the reference addresses recent areas where optimization theories and techniques have advanced. Particularly heavy attention resulted in health science and transportation, with entries such as "Algorithms for Genomics", "Optimization and Radiotherapy Treatment Design", and "Crew Scheduling".

Book Introduction to Evolutionary Algorithms

Download or read book Introduction to Evolutionary Algorithms written by Xinjie Yu and published by Springer Science & Business Media. This book was released on 2010-06-10 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: Evolutionary algorithms are becoming increasingly attractive across various disciplines, such as operations research, computer science, industrial engineering, electrical engineering, social science and economics. Introduction to Evolutionary Algorithms presents an insightful, comprehensive, and up-to-date treatment of evolutionary algorithms. It covers such hot topics as: • genetic algorithms, • differential evolution, • swarm intelligence, and • artificial immune systems. The reader is introduced to a range of applications, as Introduction to Evolutionary Algorithms demonstrates how to model real world problems, how to encode and decode individuals, and how to design effective search operators according to the chromosome structures with examples of constraint optimization, multiobjective optimization, combinatorial optimization, and supervised/unsupervised learning. This emphasis on practical applications will benefit all students, whether they choose to continue their academic career or to enter a particular industry. Introduction to Evolutionary Algorithms is intended as a textbook or self-study material for both advanced undergraduates and graduate students. Additional features such as recommended further reading and ideas for research projects combine to form an accessible and interesting pedagogical approach to this widely used discipline.

Book Hybrid Metaheuristics

    Book Details:
  • Author : Francisco Almeida
  • Publisher : Springer
  • Release : 2006-10-04
  • ISBN : 3540463852
  • Pages : 202 pages

Download or read book Hybrid Metaheuristics written by Francisco Almeida and published by Springer. This book was released on 2006-10-04 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the Third International Workshop on Hybrid Metaheuristics, HM 2006, held in Gran Canaria, Spain, in October 2006. The 13 revised full papers presented together with one invited paper were carefully reviewed and selected from 42 submissions.

Book Handbook of Approximation Algorithms and Metaheuristics

Download or read book Handbook of Approximation Algorithms and Metaheuristics written by Teofilo F. Gonzalez and published by CRC Press. This book was released on 2018-05-15 with total page 840 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Approximation Algorithms and Metaheuristics, Second Edition reflects the tremendous growth in the field, over the past two decades. Through contributions from leading experts, this handbook provides a comprehensive introduction to the underlying theory and methodologies, as well as the various applications of approximation algorithms and metaheuristics. Volume 1 of this two-volume set deals primarily with methodologies and traditional applications. It includes restriction, relaxation, local ratio, approximation schemes, randomization, tabu search, evolutionary computation, local search, neural networks, and other metaheuristics. It also explores multi-objective optimization, reoptimization, sensitivity analysis, and stability. Traditional applications covered include: bin packing, multi-dimensional packing, Steiner trees, traveling salesperson, scheduling, and related problems. Volume 2 focuses on the contemporary and emerging applications of methodologies to problems in combinatorial optimization, computational geometry and graphs problems, as well as in large-scale and emerging application areas. It includes approximation algorithms and heuristics for clustering, networks (sensor and wireless), communication, bioinformatics search, streams, virtual communities, and more. About the Editor Teofilo F. Gonzalez is a professor emeritus of computer science at the University of California, Santa Barbara. He completed his Ph.D. in 1975 from the University of Minnesota. He taught at the University of Oklahoma, the Pennsylvania State University, and the University of Texas at Dallas, before joining the UCSB computer science faculty in 1984. He spent sabbatical leaves at the Monterrey Institute of Technology and Higher Education and Utrecht University. He is known for his highly cited pioneering research in the hardness of approximation; for his sublinear and best possible approximation algorithm for k-tMM clustering; for introducing the open-shop scheduling problem as well as algorithms for its solution that have found applications in numerous research areas; as well as for his research on problems in the areas of job scheduling, graph algorithms, computational geometry, message communication, wire routing, etc.

Book Discrete Diversity and Dispersion Maximization

Download or read book Discrete Diversity and Dispersion Maximization written by Rafael Martí and published by Springer Nature. This book was released on 2024-01-06 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book demonstrates the metaheuristic methodologies that apply to maximum diversity problems to solve them. Maximum diversity problems arise in many practical settings from facility location to social network analysis and constitute an important class of NP-hard problems in combinatorial optimization. In fact, this volume presents a “missing link” in the combinatorial optimization-related literature. In providing the basic principles and fundamental ideas of the most successful methodologies for discrete optimization, this book allows readers to create their own applications for other discrete optimization problems. Additionally, the book is designed to be useful and accessible to researchers and practitioners in management science, industrial engineering, economics, and computer science, while also extending value to non-experts in combinatorial optimization. Owed to the tutorials presented in each chapter, this book may be used in a master course, a doctoral seminar, or as supplementary to a primary text in upper undergraduate courses. The chapters are divided into three main sections. The first section describes a metaheuristic methodology in a tutorial style, offering generic descriptions that, when applied, create an implementation of the methodology for any optimization problem. The second section presents the customization of the methodology to a given diversity problem, showing how to go from theory to application in creating a heuristic. The final part of the chapters is devoted to experimentation, describing the results obtained with the heuristic when solving the diversity problem. Experiments in the book target the so-called MDPLIB set of instances as a benchmark to evaluate the performance of the methods.

Book Meta Heuristics Optimization Algorithms in Engineering  Business  Economics  and Finance

Download or read book Meta Heuristics Optimization Algorithms in Engineering Business Economics and Finance written by Vasant, Pandian M. and published by IGI Global. This book was released on 2012-09-30 with total page 735 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization techniques have developed into a significant area concerning industrial, economics, business, and financial systems. With the development of engineering and financial systems, modern optimization has played an important role in service-centered operations and as such has attracted more attention to this field. Meta-heuristic hybrid optimization is a newly development mathematical framework based optimization technique. Designed by logicians, engineers, analysts, and many more, this technique aims to study the complexity of algorithms and problems. Meta-Heuristics Optimization Algorithms in Engineering, Business, Economics, and Finance explores the emerging study of meta-heuristics optimization algorithms and methods and their role in innovated real world practical applications. This book is a collection of research on the areas of meta-heuristics optimization algorithms in engineering, business, economics, and finance and aims to be a comprehensive reference for decision makers, managers, engineers, researchers, scientists, financiers, and economists as well as industrialists.

Book Metaheuristics for Vehicle Routing Problems

Download or read book Metaheuristics for Vehicle Routing Problems written by Nacima Labadie and published by John Wiley & Sons. This book was released on 2016-02-10 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is dedicated to metaheuristics as applied to vehicle routing problems. Several implementations are given as illustrative examples, along with applications to several typical vehicle routing problems. As a first step, a general presentation intends to make the reader more familiar with the related field of logistics and combinatorial optimization. This preamble is completed with a description of significant heuristic methods classically used to provide feasible solutions quickly, and local improvement moves widely used to search for enhanced solutions. The overview of these fundamentals allows appreciating the core of the work devoted to an analysis of metaheuristic methods for vehicle routing problems. Those methods are exposed according to their feature of working either on a sequence of single solutions, or on a set of solutions, or even by hybridizing metaheuristic approaches with others kind of methods.

Book Recent Advances in Evolutionary Computation for Combinatorial Optimization

Download or read book Recent Advances in Evolutionary Computation for Combinatorial Optimization written by Carlos Cotta and published by Springer. This book was released on 2008-09-08 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combinatorial optimisation is a ubiquitous discipline whose usefulness spans vast applications domains. The intrinsic complexity of most combinatorial optimisation problems makes classical methods unaffordable in many cases. To acquire practical solutions to these problems requires the use of metaheuristic approaches that trade completeness for pragmatic effectiveness. Such approaches are able to provide optimal or quasi-optimal solutions to a plethora of difficult combinatorial optimisation problems. The application of metaheuristics to combinatorial optimisation is an active field in which new theoretical developments, new algorithmic models, and new application areas are continuously emerging. This volume presents recent advances in the area of metaheuristic combinatorial optimisation, with a special focus on evolutionary computation methods. Moreover, it addresses local search methods and hybrid approaches. In this sense, the book includes cutting-edge theoretical, methodological, algorithmic and applied developments in the field, from respected experts and with a sound perspective.

Book Learning and Intelligent Optimization

Download or read book Learning and Intelligent Optimization written by Vittorio Maniezzo and published by Springer. This book was released on 2008-12-17 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume collects the accepted papers presented at the Learning and Intelligent OptimizatioN conference (LION 2007 II) held December 8–12, 2007, in Trento, Italy. The motivation for the meeting is related to the current explosion in the number and variety of heuristic algorithms for hard optimization problems, which raises - merous interesting and challenging issues. Practitioners are confronted with the b- den of selecting the most appropriate method, in many cases through an expensive algorithm configuration and parameter-tuning process, and subject to a steep learning curve. Scientists seek theoretical insights and demand a sound experimental meth- ology for evaluating algorithms and assessing strengths and weaknesses. A necessary prerequisite for this effort is a clear separation between the algorithm and the expe- menter, who, in too many cases, is "in the loop" as a crucial intelligent learning c- ponent. Both issues are related to designing and engineering ways of "learning" about the performance of different techniques, and ways of using memory about algorithm behavior in the past to improve performance in the future. Intelligent learning schemes for mining the knowledge obtained from different runs or during a single run can - prove the algorithm development and design process and simplify the applications of high-performance optimization methods. Combinations of algorithms can further improve the robustness and performance of the individual components provided that sufficient knowledge of the relationship between problem instance characteristics and algorithm performance is obtained.