Download or read book Maths and STATS for Web Analytics and Conversion Optimization written by Himanshu Sharma and published by Blurb. This book was released on 2015-11-03 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: The role of maths and statistics in the world of web analytics is not clear to many marketers. Not many talk or write about the usage of statistics and data science in conversion optimization. This book has been written to fill this knowledge gap.This expert guide will teach you exactly what you need to know. It will teach you how to leverage the knowledge of maths and statistics in order to accurately interpret data and take actions which can quickly improve the bottom-line of your online business. Every topic covered in this book has something to do directly with your day to day job. This book covers vital topics on maths and statistics which every internet marketer/web analyst should get familiar with in order to achieve optimum results from their analysis, marketing campaigns and conversion optimization efforts. It explains some of the most useful statistics terms/concepts one by one and will also show you their practical use in web analytics and conversion optimization, so that you can take advantage of them straightaway. "
Download or read book The Book of R written by Tilman M. Davies and published by No Starch Press. This book was released on 2016-07-16 with total page 833 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Book of R is a comprehensive, beginner-friendly guide to R, the world’s most popular programming language for statistical analysis. Even if you have no programming experience and little more than a grounding in the basics of mathematics, you’ll find everything you need to begin using R effectively for statistical analysis. You’ll start with the basics, like how to handle data and write simple programs, before moving on to more advanced topics, like producing statistical summaries of your data and performing statistical tests and modeling. You’ll even learn how to create impressive data visualizations with R’s basic graphics tools and contributed packages, like ggplot2 and ggvis, as well as interactive 3D visualizations using the rgl package. Dozens of hands-on exercises (with downloadable solutions) take you from theory to practice, as you learn: –The fundamentals of programming in R, including how to write data frames, create functions, and use variables, statements, and loops –Statistical concepts like exploratory data analysis, probabilities, hypothesis tests, and regression modeling, and how to execute them in R –How to access R’s thousands of functions, libraries, and data sets –How to draw valid and useful conclusions from your data –How to create publication-quality graphics of your results Combining detailed explanations with real-world examples and exercises, this book will provide you with a solid understanding of both statistics and the depth of R’s functionality. Make The Book of R your doorway into the growing world of data analysis.
Download or read book Attribution Modelling in Google Analytics and Beyond written by Himanshu Sharma and published by Blurb. This book was released on 2021-09-29 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: Attribution modelling is the process of understanding and assigning conversion credit to marketing channels. The primary objective of attribution modelling is to understand the buying behaviour of your website visitors and to determine the most effective marketing channels for investment at a particular point in time. A lot has been said about attribution modelling over the years. However, talking about attribution is the easy bit. Implementing it is the real challenge. This book has been written to help you implement attribution modelling in your organisation. This expert guide will help your organisation think about marketing holistically. It will teach you to leverage the knowledge of attribution modelling while allocating your marketing budget and helping you understand your users' buying behaviour. In this book, there is a strong focus on using Google Analytics and other Google tools and technologies, such as Google Ads (AdWords). I have explained various attribution models mainly in the context of Google Analytics. However, a large portion of this book does not deal with Google Analytics at all. So even if you have never used Google Analytics before, you can still benefit from this book. To get the maximum benefit from this book, you will need a working knowledge of Google Analytics and ecommerce. No knowledge of statistics or traditional marketing mix modelling is required. Any person who wants to improve the online performance of their business and marketing campaigns should read this book. Online marketers, web analysts, and data scientists will benefit the most from this book. If you have a strong background in traditional marketing mix modelling you will benefit tremendously from this book because it will enable you to integrate attribution modelling data with your MMM data. By feeding the attribution modelling data to your MMM model you can truly measure your overall marketing effectiveness and fix attribution issues.
Download or read book Attribution Modelling in Google Ads and Facebook written by Himanshu Sharma and published by Blurb. This book was released on 2020-11-27 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: Attribution modelling is the process of understanding the customer purchasing journey and determining the most effective marketing channels / campaigns for investment at a particular point in time. A lot has been said about attribution modelling over the years. However, talking about attribution is the easy bit, implementing it is the real challenge. This book has been written to help you implement attribution modelling in Google Ads (formerly Google AdWords) and Facebook. This expert guide will teach you, how to leverage the knowledge of attribution modelling in order to understand the customer purchasing journey and to determine the most effective marketing channels for investment.
Download or read book Mathematics for Machine Learning written by Marc Peter Deisenroth and published by Cambridge University Press. This book was released on 2020-04-23 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
Download or read book Business and Consumer Analytics New Ideas written by Pablo Moscato and published by Springer. This book was released on 2019-05-30 with total page 1000 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume handbook presents a collection of novel methodologies with applications and illustrative examples in the areas of data-driven computational social sciences. Throughout this handbook, the focus is kept specifically on business and consumer-oriented applications with interesting sections ranging from clustering and network analysis, meta-analytics, memetic algorithms, machine learning, recommender systems methodologies, parallel pattern mining and data mining to specific applications in market segmentation, travel, fashion or entertainment analytics. A must-read for anyone in data-analytics, marketing, behavior modelling and computational social science, interested in the latest applications of new computer science methodologies. The chapters are contributed by leading experts in the associated fields.The chapters cover technical aspects at different levels, some of which are introductory and could be used for teaching. Some chapters aim at building a common understanding of the methodologies and recent application areas including the introduction of new theoretical results in the complexity of core problems. Business and marketing professionals may use the book to familiarize themselves with some important foundations of data science. The work is a good starting point to establish an open dialogue of communication between professionals and researchers from different fields. Together, the two volumes present a number of different new directions in Business and Customer Analytics with an emphasis in personalization of services, the development of new mathematical models and new algorithms, heuristics and metaheuristics applied to the challenging problems in the field. Sections of the book have introductory material to more specific and advanced themes in some of the chapters, allowing the volumes to be used as an advanced textbook. Clustering, Proximity Graphs, Pattern Mining, Frequent Itemset Mining, Feature Engineering, Network and Community Detection, Network-based Recommending Systems and Visualization, are some of the topics in the first volume. Techniques on Memetic Algorithms and their applications to Business Analytics and Data Science are surveyed in the second volume; applications in Team Orienteering, Competitive Facility-location, and Visualization of Products and Consumers are also discussed. The second volume also includes an introduction to Meta-Analytics, and to the application areas of Fashion and Travel Analytics. Overall, the two-volume set helps to describe some fundamentals, acts as a bridge between different disciplines, and presents important results in a rapidly moving field combining powerful optimization techniques allied to new mathematical models critical for personalization of services. Academics and professionals working in the area of business anyalytics, data science, operations research and marketing will find this handbook valuable as a reference. Students studying these fields will find this handbook useful and helpful as a secondary textbook.
Download or read book Digital marketing like a PRO written by Clo Willaerts and published by Lannoo Meulenhoff - Belgium. This book was released on 2023-01-31 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: How do you translate your business objectives into a digital marketing strategy? What are today's best practices for content marketing, email marketing, social media and online advertising? What is the practical use for new technologies like Augmented and Virtual Reality, the Internet of Things, Artificial Intelligence and chatbots? Digital Marketing like a PRO is an easy to follow, step-by-step marketing guide that helps you maximize all digital channels. Packed with models, information and examples to help you succeed, it is free of fluff and noise so you can get to work quickly. Whether you're new to marketing or a long-time professional seeking to boost your skills, this digital marketing handbook will help you save time, energy and resources as you learn from tested industry models and best practices.
Download or read book Text Analytics with Python written by Dipanjan Sarkar and published by Apress. This book was released on 2016-11-30 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: Derive useful insights from your data using Python. You will learn both basic and advanced concepts, including text and language syntax, structure, and semantics. You will focus on algorithms and techniques, such as text classification, clustering, topic modeling, and text summarization. Text Analytics with Python teaches you the techniques related to natural language processing and text analytics, and you will gain the skills to know which technique is best suited to solve a particular problem. You will look at each technique and algorithm with both a bird's eye view to understand how it can be used as well as with a microscopic view to understand the mathematical concepts and to implement them to solve your own problems. What You Will Learn: Understand the major concepts and techniques of natural language processing (NLP) and text analytics, including syntax and structure Build a text classification system to categorize news articles, analyze app or game reviews using topic modeling and text summarization, and cluster popular movie synopses and analyze the sentiment of movie reviews Implement Python and popular open source libraries in NLP and text analytics, such as the natural language toolkit (nltk), gensim, scikit-learn, spaCy and Pattern Who This Book Is For : IT professionals, analysts, developers, linguistic experts, data scientists, and anyone with a keen interest in linguistics, analytics, and generating insights from textual data
Download or read book Linear Models in Statistics written by Alvin C. Rencher and published by John Wiley & Sons. This book was released on 2008-01-07 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.
Download or read book Data Analysis Using SQL and Excel written by Gordon S. Linoff and published by John Wiley & Sons. This book was released on 2010-09-16 with total page 698 pages. Available in PDF, EPUB and Kindle. Book excerpt: Useful business analysis requires you to effectively transform data into actionable information. This book helps you use SQL and Excel to extract business information from relational databases and use that data to define business dimensions, store transactions about customers, produce results, and more. Each chapter explains when and why to perform a particular type of business analysis in order to obtain useful results, how to design and perform the analysis using SQL and Excel, and what the results should look like.
Download or read book Data Science and Big Data Analytics written by EMC Education Services and published by John Wiley & Sons. This book was released on 2014-12-19 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Science and Big Data Analytics is about harnessing the power of data for new insights. The book covers the breadth of activities and methods and tools that Data Scientists use. The content focuses on concepts, principles and practical applications that are applicable to any industry and technology environment, and the learning is supported and explained with examples that you can replicate using open-source software. This book will help you: Become a contributor on a data science team Deploy a structured lifecycle approach to data analytics problems Apply appropriate analytic techniques and tools to analyzing big data Learn how to tell a compelling story with data to drive business action Prepare for EMC Proven Professional Data Science Certification Get started discovering, analyzing, visualizing, and presenting data in a meaningful way today!
Download or read book Introduction to Probability and Statistics Using R written by G. Jay Kerns and published by Lulu.com. This book was released on 2010-01-10 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a textbook for an undergraduate course in probability and statistics. The approximate prerequisites are two or three semesters of calculus and some linear algebra. Students attending the class include mathematics, engineering, and computer science majors.
Download or read book The Hidden Secret of Quotes written by Mwanandeke Kindembo and published by Independently published. This book was released on 2020-11-14 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author has presented us with the book of quotes. The book is composed of 222 quotes. All of them are his own quotes that he has been writing for the past years, even before he published his first book in 2019. The book is therefore, filled with concrete ideas of achieving freedom, equality, brotherhood and finding peace in life. Apart from that, the reader will be met with some quotes on politics, philosophy, love, motivation, success, science, attraction and even religious ones. Showing how the author is not limiting himself when it comes on learning new concepts. His humanity side can be easily seen in the very opening quote: “People are beautifully made just like flowers in the garden!” Furthermore, this book will act as a summary of his previous works, and there are some useful quotes that cannot be found in his published books. They are meant to inspire and motivate the reader. That is why he decided to include them too.
Download or read book Digital Marketing Strategy written by Simon Kingsnorth and published by Kogan Page Publishers. This book was released on 2022-05-03 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build an effective and practical digital marketing strategy with this bestselling guide, covering everything from automation and analytics to integrating AI. Digital Marketing Strategy is a global bestseller, and a one-stop guide to structuring and building a more strategic approach to digital marketing. Now fully updated, this third edition covers the integration of AI in marketing, e-commerce, marketing automation, affiliate marketing and how to use digital analytical tools, plus new strategies for the latest cookie changes and privacy protection. Digital Marketing Strategy will show you how to effectively select, align and manage digital channels and operations, to streamline a successful digital marketing strategy for measurable, optimized results. Recommended by the Chartered Institute of Marketing (CIM), it is supported by real-world case studies from the likes of Coca-Cola, Spotify, Airbnb, Adidas and Hostelworld as well as checklists, key terms and insights from leading industry practitioners to help you develop your own digital marketing strategy. This book is an invaluable guide for both digital marketing students and entry-level to mid-management marketing professionals. Accompanying online resources consist of practical implementation guides spanning SEO, paid-search, email, lead-generation, as well as presentation slides and activity sheets.
Download or read book Mathematical Foundations for Data Analysis written by Jeff M. Phillips and published by Springer Nature. This book was released on 2021-03-29 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook, suitable for an early undergraduate up to a graduate course, provides an overview of many basic principles and techniques needed for modern data analysis. In particular, this book was designed and written as preparation for students planning to take rigorous Machine Learning and Data Mining courses. It introduces key conceptual tools necessary for data analysis, including concentration of measure and PAC bounds, cross validation, gradient descent, and principal component analysis. It also surveys basic techniques in supervised (regression and classification) and unsupervised learning (dimensionality reduction and clustering) through an accessible, simplified presentation. Students are recommended to have some background in calculus, probability, and linear algebra. Some familiarity with programming and algorithms is useful to understand advanced topics on computational techniques.
Download or read book Advanced Engineering Mathematics written by Michael Greenberg and published by . This book was released on 2013-09-20 with total page 1344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Appropriate for one- or two-semester Advanced Engineering Mathematics courses in departments of Mathematics and Engineering. This clear, pedagogically rich book develops a strong understanding of the mathematical principles and practices that today's engineers and scientists need to know. Equally effective as either a textbook or reference manual, it approaches mathematical concepts from a practical-use perspective making physical applications more vivid and substantial. Its comprehensive instructional framework supports a conversational, down-to-earth narrative style offering easy accessibility and frequent opportunities for application and reinforcement.
Download or read book R For Dummies written by Andrie de Vries and published by John Wiley & Sons. This book was released on 2012-06-06 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master the programming language of choice among statisticians and data analysts worldwide Coming to grips with R can be tough, even for seasoned statisticians and data analysts. Enter R For Dummies, the quick, easy way to master all the R you'll ever need. Requiring no prior programming experience and packed with practical examples, easy, step-by-step exercises, and sample code, this extremely accessible guide is the ideal introduction to R for complete beginners. It also covers many concepts that intermediate-level programmers will find extremely useful. Master your R ABCs ? get up to speed in no time with the basics, from installing and configuring R to writing simple scripts and performing simultaneous calculations on many variables Put data in its place ? get to know your way around lists, data frames, and other R data structures while learning to interact with other programs, such as Microsoft Excel Make data dance to your tune ? learn how to reshape and manipulate data, merge data sets, split and combine data, perform calculations on vectors and arrays, and much more Visualize it ? learn to use R's powerful data visualization features to create beautiful and informative graphical presentations of your data Get statistical ? find out how to do simple statistical analysis, summarize your variables, and conduct classic statistical tests, such as t-tests Expand and customize R ? get the lowdown on how to find, install, and make the most of add-on packages created by the global R community for a wide variety of purposes Open the book and find: Help downloading, installing, and configuring R Tips for getting data in and out of R Ways to use data frames and lists to organize data How to manipulate and process data Advice on fitting regression models and ANOVA Helpful hints for working with graphics How to code in R What R mailing lists and forums can do for you