Download or read book Mathematics for Quantum Chemistry written by Jay Martin Anderson and published by Courier Corporation. This book was released on 2012-12-13 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to problems of molecular structure and motion covers calculus of orthogonal functions, algebra of vector spaces, and Lagrangian and Hamiltonian formulation of classical mechanics. Answers to problems. 1966 edition.
Download or read book Handbook of Computational Quantum Chemistry written by David B. Cook and published by Courier Corporation. This book was released on 2005-08-02 with total page 852 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive text provides upper-level undergraduates and graduate students with an accessible introduction to the implementation of quantum ideas in molecular modeling, exploring practical applications alongside theoretical explanations. Topics include the Hartree-Fock method; matrix SCF equations; implementation of the closed-shell case; introduction to molecular integrals; and much more. 1998 edition.
Download or read book Quantum Theory for Mathematicians written by Brian C. Hall and published by Springer Science & Business Media. This book was released on 2013-06-19 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although ideas from quantum physics play an important role in many parts of modern mathematics, there are few books about quantum mechanics aimed at mathematicians. This book introduces the main ideas of quantum mechanics in language familiar to mathematicians. Readers with little prior exposure to physics will enjoy the book's conversational tone as they delve into such topics as the Hilbert space approach to quantum theory; the Schrödinger equation in one space dimension; the Spectral Theorem for bounded and unbounded self-adjoint operators; the Stone–von Neumann Theorem; the Wentzel–Kramers–Brillouin approximation; the role of Lie groups and Lie algebras in quantum mechanics; and the path-integral approach to quantum mechanics. The numerous exercises at the end of each chapter make the book suitable for both graduate courses and independent study. Most of the text is accessible to graduate students in mathematics who have had a first course in real analysis, covering the basics of L2 spaces and Hilbert spaces. The final chapters introduce readers who are familiar with the theory of manifolds to more advanced topics, including geometric quantization.
Download or read book Mathematical Concepts of Quantum Mechanics written by Stephen J. Gustafson and published by Springer Science & Business Media. This book was released on 2011-09-24 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book gives a streamlined introduction to quantum mechanics while describing the basic mathematical structures underpinning this discipline. Starting with an overview of key physical experiments illustrating the origin of the physical foundations, the book proceeds with a description of the basic notions of quantum mechanics and their mathematical content. It then makes its way to topics of current interest, specifically those in which mathematics plays an important role. The more advanced topics presented include many-body systems, modern perturbation theory, path integrals, the theory of resonances, quantum statistics, mean-field theory, second quantization, the theory of radiation (non-relativistic quantum electrodynamics), and the renormalization group. With different selections of chapters, the book can serve as a text for an introductory, intermediate, or advanced course in quantum mechanics. The last four chapters could also serve as an introductory course in quantum field theory.
Download or read book Mathematical Models and Methods for Ab Initio Quantum Chemistry written by M. Defranceschi and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: On the occasion of the fourth International Conference on Industrial and Applied Mathematics!, we decided to organize a sequence of 4 minisymposia devoted to the mathematical aspects and the numerical aspects of Quantum Chemistry. Our goal was to bring together scientists from different communities, namely mathematicians, experts at numerical analysis and computer science, chemists, just to see whether this heterogeneous set of lecturers can produce a rather homogeneous presentation of the domain to an uninitiated audience. To the best of our knowledgde, nothing of this kind had never been tempted so far. It seemed to us that it was the good time for doing it, both . because the interest of applied mathematicians into the world of computational chemistry has exponentially increased in the past few years, and because the community of chemists feels more and more concerned with the numerical issues. Indeed, in the early years of Quantum Chemistry, the pioneers (Coulson, Mac Weeny, just to quote two of them) used to solve fundamental equations modelling toy systems which could be simply numerically handled in view of their very limited size. The true difficulty arose with the need to model larger systems while possibly taking into account their interaction with their environment. Hand calculations were no longer possible, and computing science came into the picture.
Download or read book Mathematics of Classical and Quantum Physics written by Frederick W. Byron and published by Courier Corporation. This book was released on 2012-04-26 with total page 674 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graduate-level text offers unified treatment of mathematics applicable to many branches of physics. Theory of vector spaces, analytic function theory, theory of integral equations, group theory, and more. Many problems. Bibliography.
Download or read book Introduction to Quantum Mechanics with Applications to Chemistry written by Linus Pauling and published by Courier Corporation. This book was released on 2012-06-08 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Classic undergraduate text explores wave functions for the hydrogen atom, perturbation theory, the Pauli exclusion principle, and the structure of simple and complex molecules. Numerous tables and figures.
Download or read book Quantum Mechanics for Mathematicians written by Leon Armenovich Takhtadzhi͡an and published by American Mathematical Soc.. This book was released on 2008 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents a comprehensive treatment of quantum mechanics from a mathematics perspective. Including traditional topics, like classical mechanics, mathematical foundations of quantum mechanics, quantization, and the Schrodinger equation, this book gives a mathematical treatment of systems of identical particles with spin.
Download or read book Mathematical Foundations of Quantum Mechanics written by John von Neumann and published by Princeton University Press. This book was released on 1955 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: A revolutionary book that for the first time provided a rigorous mathematical framework for quantum mechanics. -- Google books
Download or read book A Mathematical Primer on Quantum Mechanics written by Alessandro Teta and published by Springer. This book was released on 2018-04-17 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a rigorous yet elementary approach to quantum mechanics that will meet the needs of Master’s-level Mathematics students and is equally suitable for Physics students who are interested in gaining a deeper understanding of the mathematical structure of the theory. Throughout the coverage, which is limited to single-particle quantum mechanics, the focus is on formulating theory and developing applications in a mathematically precise manner. Following a review of selected key concepts in classical physics and the historical background, the basic elements of the theory of operators in Hilbert spaces are presented and used to formulate the rules of quantum mechanics. The discussion then turns to free particles, harmonic oscillators, delta potential, and hydrogen atoms, providing rigorous proofs of the corresponding dynamical properties. Starting from an analysis of these applications, readers are subsequently introduced to more advanced topics such as the classical limit, scattering theory, and spectral analysis of Schrödinger operators. The main content is complemented by numerous exercises that stimulate interactive learning and help readers check their progress.
Download or read book Algebraic Methods in Quantum Chemistry and Physics written by Francisco M. Fernandez and published by CRC Press. This book was released on 1995-10-24 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic Methods in Quantum Chemistry and Physics provides straightforward presentations of selected topics in theoretical chemistry and physics, including Lie algebras and their applications, harmonic oscillators, bilinear oscillators, perturbation theory, numerical solutions of the Schrödinger equation, and parameterizations of the time-evolution operator. The mathematical tools described in this book are presented in a manner that clearly illustrates their application to problems arising in theoretical chemistry and physics. The application techniques are carefully explained with step-by-step instructions that are easy to follow, and the results are organized to facilitate both manual and numerical calculations. Algebraic Methods in Quantum Chemistry and Physics demonstrates how to obtain useful analytical results with elementary algebra and calculus and an understanding of basic quantum chemistry and physics.
Download or read book Modern Quantum Chemistry written by Attila Szabo and published by Courier Corporation. This book was released on 2012-06-08 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate-level text explains the modern in-depth approaches to the calculation of electronic structure and the properties of molecules. Largely self-contained, it features more than 150 exercises. 1989 edition.
Download or read book A Mathematical Introduction to Electronic Structure Theory written by Lin Lin and published by SIAM. This book was released on 2019-06-05 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on first principle quantum mechanics, electronic structure theory is widely used in physics, chemistry, materials science, and related fields and has recently received increasing research attention in applied and computational mathematics. This book provides a self-contained, mathematically oriented introduction to the subject and its associated algorithms and analysis. It will help applied mathematics students and researchers with minimal background in physics understand the basics of electronic structure theory and prepare them to conduct research in this area. The book begins with an elementary introduction of quantum mechanics, including the uncertainty principle and the Hartree?Fock theory, which is considered the starting point of modern electronic structure theory. The authors then provide an in-depth discussion of two carefully selected topics that are directly related to several aspects of modern electronic structure calculations: density matrix based algorithms and linear response theory. Chapter 2 introduces the Kohn?Sham density functional theory with a focus on the density matrix based numerical algorithms, and Chapter 3 introduces linear response theory, which provides a unified viewpoint of several important phenomena in physics and numerics. An understanding of these topics will prepare readers for more advanced topics in this field. The book concludes with the random phase approximation to the correlation energy. The book is written for advanced undergraduate and beginning graduate students, specifically those with mathematical backgrounds but without a priori knowledge of quantum mechanics, and can be used for self-study by researchers, instructors, and other scientists. The book can also serve as a starting point to learn about many-body perturbation theory, a topic at the frontier of the study of interacting electrons.
Download or read book Problems and Solutions in Quantum Chemistry and Physics written by Charles S. Johnson and published by Courier Corporation. This book was released on 2013-01-18 with total page 750 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unusually varied problems, with detailed solutions, cover quantum mechanics, wave mechanics, angular momentum, molecular spectroscopy, scattering theory, more. 280 problems, plus 139 supplementary exercises.
Download or read book Advanced Quantum Mechanics written by Franz Schwabl and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers advanced topics in quantum mechanics, including nonrelativistic multi-particle systems, relativistic wave equations, and relativistic fields. Numerous examples for application help readers gain a thorough understanding of the subject. The presentation of relativistic wave equations and their symmetries, and the fundamentals of quantum field theory lay the foundations for advanced studies in solid-state physics, nuclear, and elementary particle physics. The authors earlier book, Quantum Mechanics, was praised for its unsurpassed clarity.
Download or read book Mathematical Methods in Quantum Mechanics written by Gerald Teschl and published by American Mathematical Soc.. This book was released on 2009 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrodinger operators. Part 1 of the book is a concise introduction to the spectral theory of unbounded operators. Only those topics that will be needed for later applications are covered. The spectral theorem is a central topic in this approach and is introduced at an early stage. Part 2 starts with the free Schrodinger equation and computes the free resolvent and time evolution. Position, momentum, and angular momentum are discussed via algebraic methods. Various mathematical methods are developed, which are then used to compute the spectrum of the hydrogen atom. Further topics include the nondegeneracy of the ground state, spectra of atoms, and scattering theory. This book serves as a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required. In particular, no functional analysis and no Lebesgue integration theory are assumed. It develops the mathematical tools necessary to prove some key results in nonrelativistic quantum mechanics. Mathematical Methods in Quantum Mechanics is intended for beginning graduate students in both mathematics and physics and provides a solid foundation for reading more advanced books and current research literature. It is well suited for self-study and includes numerous exercises (many with hints).
Download or read book Computational Chemistry written by Errol G. Lewars and published by Springer Science & Business Media. This book was released on 2007-05-08 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational chemistry has become extremely important in the last decade, being widely used in academic and industrial research. Yet there have been few books designed to teach the subject to nonspecialists. Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics is an invaluable tool for teaching and researchers alike. The book provides an overview of the field, explains the basic underlying theory at a meaningful level that is not beyond beginners, and it gives numerous comparisons of different methods with one another and with experiment. The following concepts are illustrated and their possibilities and limitations are given: - potential energy surfaces; - simple and extended Hückel methods; - ab initio, AM1 and related semiempirical methods; - density functional theory (DFT). Topics are placed in a historical context, adding interest to them and removing much of their apparently arbitrary aspect. The large number of references, to all significant topics mentioned, should make this book useful not only to undergraduates but also to graduate students and academic and industrial researchers.