Download or read book An Introduction to Mathematical Modeling of Infectious Diseases written by Michael Y. Li and published by Springer. This book was released on 2018-01-30 with total page 163 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text provides essential modeling skills and methodology for the study of infectious diseases through a one-semester modeling course or directed individual studies. The book includes mathematical descriptions of epidemiological concepts, and uses classic epidemic models to introduce different mathematical methods in model analysis. Matlab codes are also included for numerical implementations. It is primarily written for upper undergraduate and beginning graduate students in mathematical sciences who have an interest in mathematical modeling of infectious diseases. Although written in a rigorous mathematical manner, the style is not unfriendly to non-mathematicians.
Download or read book Mathematical Epidemiology of Infectious Diseases written by O. Diekmann and published by John Wiley & Sons. This book was released on 2000-04-07 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Epidemiology of Infectious Diseases Model Building, Analysis and Interpretation O. Diekmann University of Utrecht, The Netherlands J. A. P. Heesterbeek Centre for Biometry Wageningen, The Netherlands The mathematical modelling of epidemics in populations is a vast and important area of study. It is about translating biological assumptions into mathematics, about mathematical analysis aided by interpretation and about obtaining insight into epidemic phenomena when translating mathematical results back into population biology. Model assumptions are formulated in terms of, usually stochastic, behaviour of individuals and then the resulting phenomena, at the population level, are unravelled. Conceptual clarity is attained, assumptions are stated clearly, hidden working hypotheses are attained and mechanistic links between different observables are exposed. Features: * Model construction, analysis and interpretation receive detailed attention * Uniquely covers both deterministic and stochastic viewpoints * Examples of applications given throughout * Extensive coverage of the latest research into the mathematical modelling of epidemics of infectious diseases * Provides a solid foundation of modelling skills The reader will learn to translate, model, analyse and interpret, with the help of the numerous exercises. In literally working through this text, the reader acquires modelling skills that are also valuable outside of epidemiology, certainly within population dynamics, but even beyond that. In addition, the reader receives training in mathematical argumentation. The text is aimed at applied mathematicians with an interest in population biology and epidemiology, at theoretical biologists and epidemiologists. Previous exposure to epidemic concepts is not required, as all background information is given. The book is primarily aimed at self-study and ideally suited for small discussion groups, or for use as a course text.
Download or read book Mathematical Tools for Understanding Infectious Disease Dynamics written by Odo Diekmann and published by Princeton University Press. This book was released on 2012-11-18 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical modeling is critical to our understanding of how infectious diseases spread at the individual and population levels. This book gives readers the necessary skills to correctly formulate and analyze mathematical models in infectious disease epidemiology, and is the first treatment of the subject to integrate deterministic and stochastic models and methods. Mathematical Tools for Understanding Infectious Disease Dynamics fully explains how to translate biological assumptions into mathematics to construct useful and consistent models, and how to use the biological interpretation and mathematical reasoning to analyze these models. It shows how to relate models to data through statistical inference, and how to gain important insights into infectious disease dynamics by translating mathematical results back to biology. This comprehensive and accessible book also features numerous detailed exercises throughout; full elaborations to all exercises are provided. Covers the latest research in mathematical modeling of infectious disease epidemiology Integrates deterministic and stochastic approaches Teaches skills in model construction, analysis, inference, and interpretation Features numerous exercises and their detailed elaborations Motivated by real-world applications throughout
Download or read book Mathematical Modeling Approach To Infectious Diseases A Cross Diffusion Pde Models For Epidemiology written by William E Schiesser and published by World Scientific. This book was released on 2018-06-27 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt: The intent of this book is to provide a methodology for the analysis of infectious diseases by computer-based mathematical models. The approach is based on ordinary differential equations (ODEs) that provide time variation of the model dependent variables and partial differential equations (PDEs) that provide time and spatial (spatiotemporal) variations of the model dependent variables.The starting point is a basic ODE SIR (Susceptible Infected Recovered) model that defines the S,I,R populations as a function of time. The ODE SIR model is then extended to PDEs that demonstrate the spatiotemporal evolution of the S,I,R populations. A unique feature of the PDE model is the use of cross diffusion between populations, a nonlinear effect that is readily accommodated numerically. A second feature is the use of radial coordinates to represent the geographical distribution of the model populations.The numerical methods for the computer implementation of ODE/PDE models for infectious diseases are illustrated with documented R routines for particular applications, including models for malaria and the Zika virus. The R routines are available from a download so that the reader can reproduce the reported solutions, then extend the applications through computer experimentation, including the addition of postulated effects and associated equations, and the implementation of alternative models of interest.The ODE/PDE methodology is open ended and facilitates the development of computer-based models which hopefully can elucidate the causes/conditions of infectious disease evolution and suggest methods of control.
Download or read book A Historical Introduction to Mathematical Modeling of Infectious Diseases written by Ivo M. Foppa and published by Academic Press. This book was released on 2016-10-18 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Historical Introduction to Mathematical Modeling of Infectious Diseases: Seminal Papers in Epidemiology offers step-by-step help on how to navigate the important historical papers on the subject, beginning in the 18th century. The book carefully, and critically, guides the reader through seminal writings that helped revolutionize the field. With pointed questions, prompts, and analysis, this book helps the non-mathematician develop their own perspective, relying purely on a basic knowledge of algebra, calculus, and statistics. By learning from the important moments in the field, from its conception to the 21st century, it enables readers to mature into competent practitioners of epidemiologic modeling. - Presents a refreshing and in-depth look at key historical works of mathematical epidemiology - Provides all the basic knowledge of mathematics readers need in order to understand the fundamentals of mathematical modeling of infectious diseases - Includes questions, prompts, and answers to help apply historical solutions to modern day problems
Download or read book Mathematical Models of Infectious Diseases and Social Issues written by Nita H. Shah and published by Medical Information Science Reference. This book was released on 2020 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book explores the transmission dynamics of infectious diseases and social issues"--
Download or read book Modeling and Dynamics of Infectious Diseases written by Zhien Ma and published by World Scientific. This book was released on 2009 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a systematic introduction to the fundamental methods and techniques and the frontiers of ? along with many new ideas and results on ? infectious disease modeling, parameter estimation and transmission dynamics. It provides complementary approaches, from deterministic to statistical to network modeling; and it seeks viewpoints of the same issues from different angles, from mathematical modeling to statistical analysis to computer simulations and finally to concrete applications.
Download or read book Mathematical Modelling of Immune Response in Infectious Diseases written by Guri I. Marchuk and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Beginning his work on the monograph to be published in English, this author tried to present more or less general notions of the possibilities of mathematics in the new and rapidly developing science of infectious immunology, describing the processes of an organism's defence against antigen invasions. The results presented in this monograph are based on the construc tion and application of closed models of immune response to infections which makes it possible to approach problems of optimizing the treat ment of chronic and hypertoxic forms of diseases. The author, being a mathematician, had creative long-Iasting con tacts with immunologists, geneticist, biologists, and clinicians. As far back as 1976 it resulted in the organization of a special seminar in the Computing Center of Siberian Branch of the USSR Academy of Sci ences on mathematical models in immunology. The seminar attracted the attention of a wide circle of leading specialists in various fields of science. All these made it possible to approach, from a more or less united stand point, the construction of models of immune response, the mathematical description of the models, and interpretation of results.
Download or read book Infectious Disease Modeling written by Xinzhi Liu and published by Springer. This book was released on 2017-02-25 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents infectious diseases modeled mathematically, taking seasonality and changes in population behavior into account, using a switched and hybrid systems framework. The scope of coverage includes background on mathematical epidemiology, including classical formulations and results; a motivation for seasonal effects and changes in population behavior, an investigation into term-time forced epidemic models with switching parameters, and a detailed account of several different control strategies. The main goal is to study these models theoretically and to establish conditions under which eradication or persistence of the disease is guaranteed. In doing so, the long-term behavior of the models is determined through mathematical techniques from switched systems theory. Numerical simulations are also given to augment and illustrate the theoretical results and to help study the efficacy of the control schemes.
Download or read book Mathematical Epidemiology written by Fred Brauer and published by Springer Science & Business Media. This book was released on 2008-04-30 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on lecture notes of two summer schools with a mixed audience from mathematical sciences, epidemiology and public health, this volume offers a comprehensive introduction to basic ideas and techniques in modeling infectious diseases, for the comparison of strategies to plan for an anticipated epidemic or pandemic, and to deal with a disease outbreak in real time. It covers detailed case studies for diseases including pandemic influenza, West Nile virus, and childhood diseases. Models for other diseases including Severe Acute Respiratory Syndrome, fox rabies, and sexually transmitted infections are included as applications. Its chapters are coherent and complementary independent units. In order to accustom students to look at the current literature and to experience different perspectives, no attempt has been made to achieve united writing style or unified notation. Notes on some mathematical background (calculus, matrix algebra, differential equations, and probability) have been prepared and may be downloaded at the web site of the Centre for Disease Modeling (www.cdm.yorku.ca).
Download or read book An Introduction to Infectious Disease Modelling written by Emilia Vynnycky and published by Oxford University Press, USA. This book was released on 2010-05-13 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical models are increasingly used to guide public health policy decisions and explore questions in infectious disease control. Written for readers without advanced mathematical skills, this book provides an introduction to this area.
Download or read book An Introduction to Mathematical Epidemiology written by Maia Martcheva and published by Springer. This book was released on 2015-10-20 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is a comprehensive, self-contained introduction to the mathematical modeling and analysis of infectious diseases. It includes model building, fitting to data, local and global analysis techniques. Various types of deterministic dynamical models are considered: ordinary differential equation models, delay-differential equation models, difference equation models, age-structured PDE models and diffusion models. It includes various techniques for the computation of the basic reproduction number as well as approaches to the epidemiological interpretation of the reproduction number. MATLAB code is included to facilitate the data fitting and the simulation with age-structured models.
Download or read book Modeling Infectious Diseases in Humans and Animals written by Matt J. Keeling and published by Princeton University Press. This book was released on 2011-09-19 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: For epidemiologists, evolutionary biologists, and health-care professionals, real-time and predictive modeling of infectious disease is of growing importance. This book provides a timely and comprehensive introduction to the modeling of infectious diseases in humans and animals, focusing on recent developments as well as more traditional approaches. Matt Keeling and Pejman Rohani move from modeling with simple differential equations to more recent, complex models, where spatial structure, seasonal "forcing," or stochasticity influence the dynamics, and where computer simulation needs to be used to generate theory. In each of the eight chapters, they deal with a specific modeling approach or set of techniques designed to capture a particular biological factor. They illustrate the methodology used with examples from recent research literature on human and infectious disease modeling, showing how such techniques can be used in practice. Diseases considered include BSE, foot-and-mouth, HIV, measles, rubella, smallpox, and West Nile virus, among others. Particular attention is given throughout the book to the development of practical models, useful both as predictive tools and as a means to understand fundamental epidemiological processes. To emphasize this approach, the last chapter is dedicated to modeling and understanding the control of diseases through vaccination, quarantine, or culling. Comprehensive, practical introduction to infectious disease modeling Builds from simple to complex predictive models Models and methodology fully supported by examples drawn from research literature Practical models aid students' understanding of fundamental epidemiological processes For many of the models presented, the authors provide accompanying programs written in Java, C, Fortran, and MATLAB In-depth treatment of role of modeling in understanding disease control
Download or read book Mathematical Models in Epidemiology written by Fred Brauer and published by Springer Nature. This book was released on 2019-10-10 with total page 628 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is a comprehensive, self-contained introduction to the mathematical modeling and analysis of disease transmission models. It includes (i) an introduction to the main concepts of compartmental models including models with heterogeneous mixing of individuals and models for vector-transmitted diseases, (ii) a detailed analysis of models for important specific diseases, including tuberculosis, HIV/AIDS, influenza, Ebola virus disease, malaria, dengue fever and the Zika virus, (iii) an introduction to more advanced mathematical topics, including age structure, spatial structure, and mobility, and (iv) some challenges and opportunities for the future. There are exercises of varying degrees of difficulty, and projects leading to new research directions. For the benefit of public health professionals whose contact with mathematics may not be recent, there is an appendix covering the necessary mathematical background. There are indications which sections require a strong mathematical background so that the book can be useful for both mathematical modelers and public health professionals.
Download or read book Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases written by Dongmei Chen and published by John Wiley & Sons. This book was released on 2014-12-31 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Features modern research and methodology on the spread of infectious diseases and showcases a broad range of multi-disciplinary and state-of-the-art techniques on geo-simulation, geo-visualization, remote sensing, metapopulation modeling, cloud computing, and pattern analysis Given the ongoing risk of infectious diseases worldwide, it is crucial to develop appropriate analysis methods, models, and tools to assess and predict the spread of disease and evaluate the risk. Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases features mathematical and spatial modeling approaches that integrate applications from various fields such as geo-computation and simulation, spatial analytics, mathematics, statistics, epidemiology, and health policy. In addition, the book captures the latest advances in the use of geographic information system (GIS), global positioning system (GPS), and other location-based technologies in the spatial and temporal study of infectious diseases. Highlighting the current practices and methodology via various infectious disease studies, Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases features: Approaches to better use infectious disease data collected from various sources for analysis and modeling purposes Examples of disease spreading dynamics, including West Nile virus, bird flu, Lyme disease, pandemic influenza (H1N1), and schistosomiasis Modern techniques such as Smartphone use in spatio-temporal usage data, cloud computing-enabled cluster detection, and communicable disease geo-simulation based on human mobility An overview of different mathematical, statistical, spatial modeling, and geo-simulation techniques Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases is an excellent resource for researchers and scientists who use, manage, or analyze infectious disease data, need to learn various traditional and advanced analytical methods and modeling techniques, and become aware of different issues and challenges related to infectious disease modeling and simulation. The book is also a useful textbook and/or supplement for upper-undergraduate and graduate-level courses in bioinformatics, biostatistics, public health and policy, and epidemiology.
Download or read book Mathematical Modeling and Soft Computing in Epidemiology written by Jyoti Mishra and published by CRC Press. This book was released on 2020-12-28 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the uses of different mathematical modeling and soft computing techniques used in epidemiology for experiential research in projects such as how infectious diseases progress to show the likely outcome of an epidemic, and to contribute to public health interventions. This book covers mathematical modeling and soft computing techniques used to study the spread of diseases, predict the future course of an outbreak, and evaluate epidemic control strategies. This book explores the applications covering numerical and analytical solutions, presents basic and advanced concepts for beginners and industry professionals, and incorporates the latest methodologies and challenges using mathematical modeling and soft computing techniques in epidemiology. Primary users of this book include researchers, academicians, postgraduate students, and specialists.
Download or read book Epidemics written by Ottar N. Bjørnstad and published by Springer. This book was released on 2018-10-30 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is designed to be a practical study in infectious disease dynamics. The book offers an easy to follow implementation and analysis of mathematical epidemiology. The book focuses on recent case studies in order to explore various conceptual, mathematical, and statistical issues. The dynamics of infectious diseases shows a wide diversity of pattern. Some have locally persistent chains-of-transmission, others persist spatially in ‘consumer-resource metapopulations’. Some infections are prevalent among the young, some among the old and some are age-invariant. Temporally, some diseases have little variation in prevalence, some have predictable seasonal shifts and others exhibit violent epidemics that may be regular or irregular in their timing. Models and ‘models-with-data’ have proved invaluable for understanding and predicting this diversity, and thence help improve intervention and control. Using mathematical models to understand infectious disease dynamics has a very rich history in epidemiology. The field has seen broad expansions of theories as well as a surge in real-life application of mathematics to dynamics and control of infectious disease. The chapters of Epidemics: Models and Data using R have been organized in a reasonably logical way: Chapters 1-10 is a mix and match of models, data and statistics pertaining to local disease dynamics; Chapters 11-13 pertains to spatial and spatiotemporal dynamics; Chapter 14 highlights similarities between the dynamics of infectious disease and parasitoid-host dynamics; Finally, Chapters 15 and 16 overview additional statistical methodology useful in studies of infectious disease dynamics. This book can be used as a guide for working with data, models and ‘models-and-data’ to understand epidemics and infectious disease dynamics in space and time.