Download or read book Mathematical Analysis Approximation Theory and Their Applications written by Themistocles M. Rassias and published by Springer. This book was released on 2016-06-03 with total page 745 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed for graduate students, researchers, and engineers in mathematics, optimization, and economics, this self-contained volume presents theory, methods, and applications in mathematical analysis and approximation theory. Specific topics include: approximation of functions by linear positive operators with applications to computer aided geometric design, numerical analysis, optimization theory, and solutions of differential equations. Recent and significant developments in approximation theory, special functions and q-calculus along with their applications to mathematics, engineering, and social sciences are discussed and analyzed. Each chapter enriches the understanding of current research problems and theories in pure and applied research.
Download or read book Design and Analysis of Approximation Algorithms written by Ding-Zhu Du and published by Springer Science & Business Media. This book was released on 2011-11-18 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended to be used as a textbook for graduate students studying theoretical computer science. It can also be used as a reference book for researchers in the area of design and analysis of approximation algorithms. Design and Analysis of Approximation Algorithms is a graduate course in theoretical computer science taught widely in the universities, both in the United States and abroad. There are, however, very few textbooks available for this course. Among those available in the market, most books follow a problem-oriented format; that is, they collected many important combinatorial optimization problems and their approximation algorithms, and organized them based on the types, or applications, of problems, such as geometric-type problems, algebraic-type problems, etc. Such arrangement of materials is perhaps convenient for a researcher to look for the problems and algorithms related to his/her work, but is difficult for a student to capture the ideas underlying the various algorithms. In the new book proposed here, we follow a more structured, technique-oriented presentation. We organize approximation algorithms into different chapters, based on the design techniques for the algorithms, so that the reader can study approximation algorithms of the same nature together. It helps the reader to better understand the design and analysis techniques for approximation algorithms, and also helps the teacher to present the ideas and techniques of approximation algorithms in a more unified way.
Download or read book Mathematical Analysis and Applications written by Themistocles M. Rassias and published by Springer Nature. This book was released on 2019-12-12 with total page 694 pages. Available in PDF, EPUB and Kindle. Book excerpt: An international community of experts scientists comprise the research and survey contributions in this volume which covers a broad spectrum of areas in which analysis plays a central role. Contributions discuss theory and problems in real and complex analysis, functional analysis, approximation theory, operator theory, analytic inequalities, the Radon transform, nonlinear analysis, and various applications of interdisciplinary research; some are also devoted to specific applications such as the three-body problem, finite element analysis in fluid mechanics, algorithms for difference of monotone operators, a vibrational approach to a financial problem, and more. This volume is useful to graduate students and researchers working in mathematics, physics, engineering, and economics.
Download or read book Nonlinear Analysis written by Qamrul Hasan Ansari and published by Springer. This book was released on 2014-06-05 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many of our daily-life problems can be written in the form of an optimization problem. Therefore, solution methods are needed to solve such problems. Due to the complexity of the problems, it is not always easy to find the exact solution. However, approximate solutions can be found. The theory of the best approximation is applicable in a variety of problems arising in nonlinear functional analysis and optimization. This book highlights interesting aspects of nonlinear analysis and optimization together with many applications in the areas of physical and social sciences including engineering. It is immensely helpful for young graduates and researchers who are pursuing research in this field, as it provides abundant research resources for researchers and post-doctoral fellows. This will be a valuable addition to the library of anyone who works in the field of applied mathematics, economics and engineering.
Download or read book Optimal Control of Partial Differential Equations written by Andrea Manzoni and published by Springer Nature. This book was released on 2022-01-01 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a book on optimal control problems (OCPs) for partial differential equations (PDEs) that evolved from a series of courses taught by the authors in the last few years at Politecnico di Milano, both at the undergraduate and graduate levels. The book covers the whole range spanning from the setup and the rigorous theoretical analysis of OCPs, the derivation of the system of optimality conditions, the proposition of suitable numerical methods, their formulation, their analysis, including their application to a broad set of problems of practical relevance. The first introductory chapter addresses a handful of representative OCPs and presents an overview of the associated mathematical issues. The rest of the book is organized into three parts: part I provides preliminary concepts of OCPs for algebraic and dynamical systems; part II addresses OCPs involving linear PDEs (mostly elliptic and parabolic type) and quadratic cost functions; part III deals with more general classes of OCPs that stand behind the advanced applications mentioned above. Starting from simple problems that allow a “hands-on” treatment, the reader is progressively led to a general framework suitable to face a broader class of problems. Moreover, the inclusion of many pseudocodes allows the reader to easily implement the algorithms illustrated throughout the text. The three parts of the book are suitable to readers with variable mathematical backgrounds, from advanced undergraduate to Ph.D. levels and beyond. We believe that applied mathematicians, computational scientists, and engineers may find this book useful for a constructive approach toward the solution of OCPs in the context of complex applications.
Download or read book Topics in Mathematical Analysis and Applications written by Themistocles M. Rassias and published by Springer. This book was released on 2014-10-13 with total page 811 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents significant advances in a number of theories and problems of Mathematical Analysis and its applications in disciplines such as Analytic Inequalities, Operator Theory, Functional Analysis, Approximation Theory, Functional Equations, Differential Equations, Wavelets, Discrete Mathematics and Mechanics. The contributions focus on recent developments and are written by eminent scientists from the international mathematical community. Special emphasis is given to new results that have been obtained in the above mentioned disciplines in which Nonlinear Analysis plays a central role. Some review papers published in this volume will be particularly useful for a broader readership in Mathematical Analysis, as well as for graduate students. An attempt is given to present all subjects in this volume in a unified and self-contained manner, to be particularly useful to the mathematical community.
Download or read book Computational Mathematics and Variational Analysis written by Nicholas J. Daras and published by Springer Nature. This book was released on 2020-06-06 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents a broad discussion of computational methods and theories on various classical and modern research problems from pure and applied mathematics. Readers conducting research in mathematics, engineering, physics, and economics will benefit from the diversity of topics covered. Contributions from an international community treat the following subjects: calculus of variations, optimization theory, operations research, game theory, differential equations, functional analysis, operator theory, approximation theory, numerical analysis, asymptotic analysis, and engineering. Specific topics include algorithms for difference of monotone operators, variational inequalities in semi-inner product spaces, function variation principles and normed minimizers, equilibria of parametrized N-player nonlinear games, multi-symplectic numerical schemes for differential equations, time-delay multi-agent systems, computational methods in non-linear design of experiments, unsupervised stochastic learning, asymptotic statistical results, global-local transformation, scattering relations of elastic waves, generalized Ostrowski and trapezoid type rules, numerical approximation, Szász Durrmeyer operators and approximation, integral inequalities, behaviour of the solutions of functional equations, functional inequalities in complex Banach spaces, functional contractions in metric spaces.
Download or read book Foundations of Applied Mathematics Volume 2 written by Jeffrey Humpherys and published by SIAM. This book was released on 2020-03-10 with total page 807 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this second book of what will be a four-volume series, the authors present, in a mathematically rigorous way, the essential foundations of both the theory and practice of algorithms, approximation, and optimization—essential topics in modern applied and computational mathematics. This material is the introductory framework upon which algorithm analysis, optimization, probability, statistics, machine learning, and control theory are built. This text gives a unified treatment of several topics that do not usually appear together: the theory and analysis of algorithms for mathematicians and data science students; probability and its applications; the theory and applications of approximation, including Fourier series, wavelets, and polynomial approximation; and the theory and practice of optimization, including dynamic optimization. When used in concert with the free supplemental lab materials, Foundations of Applied Mathematics, Volume 2: Algorithms, Approximation, Optimization teaches not only the theory but also the computational practice of modern mathematical methods. Exercises and examples build upon each other in a way that continually reinforces previous ideas, allowing students to retain learned concepts while achieving a greater depth. The mathematically rigorous lab content guides students to technical proficiency and answers the age-old question “When am I going to use this?” This textbook is geared toward advanced undergraduate and beginning graduate students in mathematics, data science, and machine learning.
Download or read book Real Analysis and Applications written by Kenneth R. Davidson and published by Springer Science & Business Media. This book was released on 2009-10-13 with total page 523 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new approach to real analysis stresses the use of the subject with respect to applications, i.e., how the principles and theory of real analysis can be applied in a variety of settings in subjects ranging from Fourier series and polynomial approximation to discrete dynamical systems and nonlinear optimization. Users will be prepared for more intensive work in each topic through these applications and their accompanying exercises. This book is appropriate for math enthusiasts with a prior knowledge of both calculus and linear algebra.
Download or read book Approximation Theory and Algorithms for Data Analysis written by Armin Iske and published by Springer. This book was released on 2018-12-14 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook offers an accessible introduction to the theory and numerics of approximation methods, combining classical topics of approximation with recent advances in mathematical signal processing, and adopting a constructive approach, in which the development of numerical algorithms for data analysis plays an important role. The following topics are covered: * least-squares approximation and regularization methods * interpolation by algebraic and trigonometric polynomials * basic results on best approximations * Euclidean approximation * Chebyshev approximation * asymptotic concepts: error estimates and convergence rates * signal approximation by Fourier and wavelet methods * kernel-based multivariate approximation * approximation methods in computerized tomography Providing numerous supporting examples, graphical illustrations, and carefully selected exercises, this textbook is suitable for introductory courses, seminars, and distance learning programs on approximation for undergraduate students.
Download or read book Approximation Methods for Polynomial Optimization written by Zhening Li and published by Springer Science & Business Media. This book was released on 2012-07-25 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: Polynomial optimization have been a hot research topic for the past few years and its applications range from Operations Research, biomedical engineering, investment science, to quantum mechanics, linear algebra, and signal processing, among many others. In this brief the authors discuss some important subclasses of polynomial optimization models arising from various applications, with a focus on approximations algorithms with guaranteed worst case performance analysis. The brief presents a clear view of the basic ideas underlying the design of such algorithms and the benefits are highlighted by illustrative examples showing the possible applications. This timely treatise will appeal to researchers and graduate students in the fields of optimization, computational mathematics, Operations Research, industrial engineering, and computer science.
Download or read book Techniques of Variational Analysis written by Jonathan Borwein and published by Springer Science & Business Media. This book was released on 2006-06-18 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: Borwein is an authority in the area of mathematical optimization, and his book makes an important contribution to variational analysis Provides a good introduction to the topic
Download or read book Foundations of Applied Mathematics Volume I written by Jeffrey Humpherys and published by SIAM. This book was released on 2017-07-07 with total page 710 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the essential foundations of both linear and nonlinear analysis necessary for understanding and working in twenty-first century applied and computational mathematics. In addition to the standard topics, this text includes several key concepts of modern applied mathematical analysis that should be, but are not typically, included in advanced undergraduate and beginning graduate mathematics curricula. This material is the introductory foundation upon which algorithm analysis, optimization, probability, statistics, differential equations, machine learning, and control theory are built. When used in concert with the free supplemental lab materials, this text teaches students both the theory and the computational practice of modern mathematical analysis. Foundations of Applied Mathematics, Volume 1: Mathematical Analysis includes several key topics not usually treated in courses at this level, such as uniform contraction mappings, the continuous linear extension theorem, Daniell?Lebesgue integration, resolvents, spectral resolution theory, and pseudospectra. Ideas are developed in a mathematically rigorous way and students are provided with powerful tools and beautiful ideas that yield a number of nice proofs, all of which contribute to a deep understanding of advanced analysis and linear algebra. Carefully thought out exercises and examples are built on each other to reinforce and retain concepts and ideas and to achieve greater depth. Associated lab materials are available that expose students to applications and numerical computation and reinforce the theoretical ideas taught in the text. The text and labs combine to make students technically proficient and to answer the age-old question, "When am I going to use this?
Download or read book Stochastic Optimization Methods written by Kurt Marti and published by Springer. This book was released on 2015-02-21 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines optimization problems that in practice involve random model parameters. It details the computation of robust optimal solutions, i.e., optimal solutions that are insensitive with respect to random parameter variations, where appropriate deterministic substitute problems are needed. Based on the probability distribution of the random data and using decision theoretical concepts, optimization problems under stochastic uncertainty are converted into appropriate deterministic substitute problems. Due to the probabilities and expectations involved, the book also shows how to apply approximative solution techniques. Several deterministic and stochastic approximation methods are provided: Taylor expansion methods, regression and response surface methods (RSM), probability inequalities, multiple linearization of survival/failure domains, discretization methods, convex approximation/deterministic descent directions/efficient points, stochastic approximation and gradient procedures and differentiation formulas for probabilities and expectations. In the third edition, this book further develops stochastic optimization methods. In particular, it now shows how to apply stochastic optimization methods to the approximate solution of important concrete problems arising in engineering, economics and operations research.
Download or read book Convex Optimization Algorithms written by Dimitri Bertsekas and published by Athena Scientific. This book was released on 2015-02-01 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive and accessible presentation of algorithms for solving convex optimization problems. It relies on rigorous mathematical analysis, but also aims at an intuitive exposition that makes use of visualization where possible. This is facilitated by the extensive use of analytical and algorithmic concepts of duality, which by nature lend themselves to geometrical interpretation. The book places particular emphasis on modern developments, and their widespread applications in fields such as large-scale resource allocation problems, signal processing, and machine learning. The book is aimed at students, researchers, and practitioners, roughly at the first year graduate level. It is similar in style to the author's 2009"Convex Optimization Theory" book, but can be read independently. The latter book focuses on convexity theory and optimization duality, while the present book focuses on algorithmic issues. The two books share notation, and together cover the entire finite-dimensional convex optimization methodology. To facilitate readability, the statements of definitions and results of the "theory book" are reproduced without proofs in Appendix B.
Download or read book Practical Mathematical Optimization written by Jan A Snyman and published by Springer. This book was released on 2018-05-02 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents basic optimization principles and gradient-based algorithms to a general audience, in a brief and easy-to-read form. It enables professionals to apply optimization theory to engineering, physics, chemistry, or business economics.
Download or read book Approximation and Optimization of Discrete and Differential Inclusions written by Elimhan N Mahmudov and published by Elsevier. This book was released on 2011-08-25 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimal control theory has numerous applications in both science and engineering. This book presents basic concepts and principles of mathematical programming in terms of set-valued analysis and develops a comprehensive optimality theory of problems described by ordinary and partial differential inclusions. In addition to including well-recognized results of variational analysis and optimization, the book includes a number of new and important ones Includes practical examples