Download or read book Mathematical Analysis of Physical Problems written by Philip Russell Wallace and published by . This book was released on 1972 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: This mathematical reference for theoretical physics employs common techniques and concepts to link classical and modern physics. It provides the necessary mathematics to solve most of the problems. Topics include the vibrating string, linear vector spaces, the potential equation, problems of diffusion and attenuation, probability and stochastic processes, and much more.
Download or read book Mathematical Tools for Changing Scale in the Analysis of Physical Systems written by William G. Gray and published by CRC Press. This book was released on 2020-01-29 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Tools for Changing Scale in the Analysis of Physical Systems presents a new systematic approach to changing the spatial scale of the differential equations describing science and engineering problems. It defines vectors, tensors, and differential operators in arbitrary orthogonal coordinate systems without resorting to conceptually difficult Riemmann-Christoffel tensor and contravariant and covariant base vectors. It reveals the usefulness of generalized functions for indicating curvilineal, surficial, or spatial regions of integration and for transforming among these integration regions. These powerful mathematical tools are harnessed to provide 128 theorems in tabular format (most not previously available in the literature) that transform time-derivative and del operators of a function at one scale to the corresponding operators acting on the function at a larger scale. Mathematical Tools for Changing Scale in the Analysis of Physical Systems also provides sample applications of the theorems to obtain continuum balance relations for arbitrary surfaces, multiphase systems, and problems of reduced dimensionality. The mathematical techniques and tabulated theorems ensure the book will be an invaluable analysis tool for practitioners and researchers studying balance equations for systems encountered in the fields of hydraulics, hydrology, porous media physics, structural analysis, chemical transport, heat transfer, and continuum mechanics.
Download or read book Mathematical Modeling of Physical Systems written by Diran Basmadjian and published by Oxford University Press on Demand. This book was released on 2003 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: Both analytical and numerical methods are explained in enough detail to function as learning tools for the beginner or as refreshers for the more informed reader. Ideal for third-year engineering, mathematics, physics, and chemistry students."--BOOK JACKET.
Download or read book Mathematical Modeling in Science and Engineering written by Ismael Herrera and published by John Wiley & Sons. This book was released on 2012-03-19 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: A powerful, unified approach to mathematical and computational modeling in science and engineering Mathematical and computational modeling makes it possible to predict the behavior of a broad range of systems across a broad range of disciplines. This text guides students and professionals through the axiomatic approach, a powerful method that will enable them to easily master the principle types of mathematical and computational models used in engineering and science. Readers will discover that this axiomatic approach not only enables them to systematically construct effective models, it also enables them to apply these models to any macroscopic physical system. Mathematical Modeling in Science and Engineering focuses on models in which the processes to be modeled are expressed as systems of partial differential equations. It begins with an introductory discussion of the axiomatic formulation of basic models, setting the foundation for further topics such as: Mechanics of classical and non-classical continuous systems Solute transport by a free fluid Flow of a fluid in a porous medium Multiphase systems Enhanced oil recovery Fluid mechanics Throughout the text, diagrams are provided to help readers visualize and better understand complex mathematical concepts. A set of exercises at the end of each chapter enables readers to put their new modeling skills into practice. There is also a bibliography in each chapter to facilitate further investigation of individual topics. Mathematical Modeling in Science and Engineering is ideal for both students and professionals across the many disciplines of science and engineering that depend on mathematical and computational modeling to predict and understand complex systems.
Download or read book Design Analysis written by David E. Thompson and published by Cambridge University Press. This book was released on 1999-01-13 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: A 1999 text for graduate students and practising engineers, introducing mathematical modeling of engineering systems.
Download or read book Dynamical Systems and Evolution Equations written by John A. Walker and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book grew out of a nine-month course first given during 1976-77 in the Division of Engineering Mechanics, University of Texas (Austin), and repeated during 1977-78 in the Department of Engineering Sciences and Applied Mathematics, Northwestern University. Most of the students were in their second year of graduate study, and all were familiar with Fourier series, Lebesgue integration, Hilbert space, and ordinary differential equa tions in finite-dimensional space. This book is primarily an exposition of certain methods of topological dynamics that have been found to be very useful in the analysis of physical systems but appear to be well known only to specialists. The purpose of the book is twofold: to present the material in such a way that the applications-oriented reader will be encouraged to apply these methods in the study of those physical systems of personal interest, and to make the coverage sufficient to render the current research literature intelligible, preparing the more mathematically inclined reader for research in this particular area of applied mathematics. We present only that portion of the theory which seems most useful in applications to physical systems. Adopting the view that the world is deterministic, we consider our basic problem to be predicting the future for a given physical system. This prediction is to be based on a known equation of evolution, describing the forward-time behavior of the system, but it is to be made without explicitly solving the equation.
Download or read book Mathematical Systems Theory I written by Diederich Hinrichsen and published by Springer Science & Business Media. This book was released on 2011-08-03 with total page 818 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the mathematical foundations of systems theory in a self-contained, comprehensive, detailed and mathematically rigorous way. It is devoted to the analysis of dynamical systems and combines features of a detailed introductory textbook with that of a reference source. The book contains many examples and figures illustrating the text which help to bring out the intuitive ideas behind the mathematical constructions.
Download or read book Physics and Mathematics of Quantum Many Body Systems written by Hal Tasaki and published by Springer Nature. This book was released on 2020-05-07 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a self-contained advanced textbook on the mathematical-physical aspects of quantum many-body systems, which begins with a pedagogical presentation of the necessary background information before moving on to subjects of active research, including topological phases of matter. The book explores in detail selected topics in quantum spin systems and lattice electron systems, namely, long-range order and spontaneous symmetry breaking in the antiferromagnetic Heisenberg model in two or higher dimensions (Part I), Haldane phenomena in antiferromagnetic quantum spin chains and related topics in topological phases of quantum matter (Part II), and the origin of magnetism in various versions of the Hubbard model (Part III). Each of these topics represents certain nontrivial phenomena or features that are invariably encountered in a variety of quantum many-body systems, including quantum field theory, condensed matter systems, cold atoms, and artificial quantum systems designed for future quantum computers. The book’s main focus is on universal properties of quantum many-body systems. The book includes roughly 50 problems with detailed solutions. The reader only requires elementary linear algebra and calculus to comprehend the material and work through the problems. Given its scope and format, the book is suitable both for self-study and as a textbook for graduate or advanced undergraduate classes.
Download or read book Mathematical Analysis in Engineering written by Chiang C. Mei and published by Cambridge University Press. This book was released on 1997-01-13 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: A paperback edition of successful and well reviewed 1995 graduate text on applied mathematics for engineers.
Download or read book Analysis and Mathematical Physics written by H. Triebel and published by Springer Science & Business Media. This book was released on 1987-01-31 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Functions Spaces and Expansions written by Ole Christensen and published by Springer Science & Business Media. This book was released on 2010-05-27 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate-level textbook is a detailed exposition of key mathematical tools in analysis aimed at students, researchers, and practitioners across science and engineering. Every topic covered has been specifically chosen because it plays a key role outside the field of pure mathematics. Although the treatment of each topic is mathematical in nature, and concrete applications are not delineated, the principles and tools presented are fundamental to exploring the computational aspects of physics and engineering. Readers are expected to have a solid understanding of linear algebra, in Rn and in general vector spaces. Familiarity with the basic concepts of calculus and real analysis, including Riemann integrals and infinite series of real or complex numbers, is also required.
Download or read book Differential Dynamical Systems Revised Edition written by James D. Meiss and published by SIAM. This book was released on 2017-01-24 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential equations are the basis for models of any physical systems that exhibit smooth change. This book combines much of the material found in a traditional course on ordinary differential equations with an introduction to the more modern theory of dynamical systems. Applications of this theory to physics, biology, chemistry, and engineering are shown through examples in such areas as population modeling, fluid dynamics, electronics, and mechanics. Differential Dynamical Systems begins with coverage of linear systems, including matrix algebra; the focus then shifts to foundational material on nonlinear differential equations, making heavy use of the contraction-mapping theorem. Subsequent chapters deal specifically with dynamical systems concepts?flow, stability, invariant manifolds, the phase plane, bifurcation, chaos, and Hamiltonian dynamics. This new edition contains several important updates and revisions throughout the book. Throughout the book, the author includes exercises to help students develop an analytical and geometrical understanding of dynamics. Many of the exercises and examples are based on applications and some involve computation; an appendix offers simple codes written in Maple, Mathematica, and MATLAB software to give students practice with computation applied to dynamical systems problems.
Download or read book Nonlinear Systems Analysis written by M. Vidyasagar and published by SIAM. This book was released on 2002-01-01 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: When M. Vidyasagar wrote the first edition of Nonlinear Systems Analysis, most control theorists considered the subject of nonlinear systems a mystery. Since then, advances in the application of differential geometric methods to nonlinear analysis have matured to a stage where every control theorist needs to possess knowledge of the basic techniques because virtually all physical systems are nonlinear in nature. The second edition, now republished in SIAM's Classics in Applied Mathematics series, provides a rigorous mathematical analysis of the behavior of nonlinear control systems under a variety of situations. It develops nonlinear generalizations of a large number of techniques and methods widely used in linear control theory. The book contains three extensive chapters devoted to the key topics of Lyapunov stability, input-output stability, and the treatment of differential geometric control theory. Audience: this text is designed for use at the graduate level in the area of nonlinear systems and as a resource for professional researchers and practitioners working in areas such as robotics, spacecraft control, motor control, and power systems.
Download or read book Modeling and Control of Complex Physical Systems written by Vincent Duindam and published by Springer Science & Business Media. This book was released on 2009-10-15 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: Energy exchange is a major foundation of the dynamics of physical systems, and, hence, in the study of complex multi-domain systems, methodologies that explicitly describe the topology of energy exchanges are instrumental in structuring the modeling and the computation of the system's dynamics and its control. This book is the outcome of the European Project "Geoplex" (FP5 IST-2001-34166) that studied and extended such system modeling and control methodologies. This unique book starts from the basic concept of port-based modeling, and extends it to port-Hamiltonian systems. This generic paradigm is applied to various physical domains, showing its power and unifying flexibility for real multi-domain systems.
Download or read book Verifying Cyber Physical Systems written by Sayan Mitra and published by MIT Press. This book was released on 2021-02-16 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: A graduate-level textbook that presents a unified mathematical framework for modeling and analyzing cyber-physical systems, with a strong focus on verification. Verification aims to establish whether a system meets a set of requirements. For such cyber-physical systems as driverless cars, autonomous spacecraft, and air-traffic management systems, verification is key to building safe systems with high levels of assurance. This graduate-level textbook presents a unified mathematical framework for modeling and analyzing cyber-physical systems, with a strong focus on verification. It distills the ideas and algorithms that have emerged from more than three decades of research and have led to the creation of industrial-scale modeling and verification techniques for cyber-physical systems.
Download or read book Foundations of Mathematical Analysis written by Richard Johnsonbaugh and published by Courier Corporation. This book was released on 2012-09-11 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: Definitive look at modern analysis, with views of applications to statistics, numerical analysis, Fourier series, differential equations, mathematical analysis, and functional analysis. More than 750 exercises; some hints and solutions. 1981 edition.
Download or read book Mathematical Analysis written by Andrew Browder and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: Among the traditional purposes of such an introductory course is the training of a student in the conventions of pure mathematics: acquiring a feeling for what is considered a proof, and supplying literate written arguments to support mathematical propositions. To this extent, more than one proof is included for a theorem - where this is considered beneficial - so as to stimulate the students' reasoning for alternate approaches and ideas. The second half of this book, and consequently the second semester, covers differentiation and integration, as well as the connection between these concepts, as displayed in the general theorem of Stokes. Also included are some beautiful applications of this theory, such as Brouwer's fixed point theorem, and the Dirichlet principle for harmonic functions. Throughout, reference is made to earlier sections, so as to reinforce the main ideas by repetition. Unique in its applications to some topics not usually covered at this level.